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Abstract

In this part� the procedure we used to model the noise characteristics of a digital CCD camera

is described in detail� The functioning of a CCD is described� along with the various sources

of noise present in the camera system� A systematic procedure is developed to measure

the spatial and temporal noise of the camera� and the results are shown in detail� Finally�

the measurement of spatial frequency response of the camera system and the validation of

various noise models are proposed as future work�
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Chapter �

Introduction and Motivation

This part of the report describes the progress of research at Penn State�s Computer Vision

Lab to develop a simple but accurate method for characterizing and removing the noise

introduced by a digital CCD camera� Digital CCD cameras o�er superior performance as

compared to their analog counterparts� For example� digital cameras are free of the spatial

inconsistencies between rows and between frames �i�e�� jitter� that may be caused by video

clock instabilities� By its nature� a digital imaging system is also highly immune to the

spatial and temporal artifacts that may be introduced by transmission�line noise� As noted

in Section � below� however� several noise processes may still be encountered in such a system�

The goal of the modeling and characterization of the camera described here is to enhance

the operation of a system for airborne obstacle detection� As an example� consider a Cessna

aircraft that has a length and wing�span of approximately � m ��
�� and the fuselage diameter

of approximately ��� m ���� ���� The detection algorithm must be capable of detecting this

small target at least �� seconds prior to a possible collision to allow for corrective actions by

the pilot� Assuming that both aircrafts are traveling at ��� m�s ���
 knots�� their relative

velocity can be as high as ��
 m�s ��

 knots�� In such case� they would be ��� km

���� nautical miles� apart �� seconds before collision� Using a camera with a resolution of


 pixels per degree� the image of the aircraft is of ��
 x 
�� pixels from a side view� but only


�� x 
�� pixels from a front view� It is clear that safety demands that noise e�ects even at

the sub�pixel level must be accounted for and compensated as much as possible�
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Chapter �

CCD Operation and Noise Sources

This chapter describes the theory of operation of a CCD camera� followed by the description

of various noise sources a�ecting a CCD camera�

��� Basics of CCD theory of operation

In this section� the theory of CCD operation is presented� and terms are de	ned� Variants of

CCD architecture are compared� and re	nements such as blooming suppression are explained

���� Discussion will lead to speci	c features of Kodak ES ��
 camera�

����� Theory of CCD operation

The charge�coupled device �CCD� 	rst appeared in a ���
 Bell Labs technical report� Its

usefulness in both analog and digital electronics was recognized at once� and CCDs have

been used� for example� in signal processing applications such as delay lines for both analog

and digital signals� Since about ���
� however� the term CCD has become synonymous

with video imaging for both the mass�produced consumer and the top�performance scienti	c

markets� Although CMOS imaging devices� o�ering a one�chip solution to image capture

and processing� are about to enter the consumer market� it seems certain that CCDs will

continue to dominate the high�performance imaging market for some time to come�

To start with� it should be noted that the CCD is an analog device� and not a digital

one� It is true that the operative quantities in the CCD are charges� and that because these

charges occur in quantizable form as electrons� there is a discrete character to the device�s

operation� Any semiconductive device� however� operates by the transfer of charge carriers�
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Although at the lowest level all such operation is discretizable� it is only when we associate

an information content to a transition between discrete levels of much greater magnitude

� a transition that is largely una�ected by the noise processes inherent in all such physical

systems � that we call such a device �digital��

In its simplest form� a CCD comprises an array of charge storage sites� wherein each

storage site is an MOS capacitor as shown in Figure ��� �a�� An MOS �for metal�oxide�

semiconductor� capacitor comprises an insulating layer of silicon oxide sandwiched between

a metallic �e�g� aluminum� gate and a silicon substrate� which has been doped into semi�

conductivity with an excess of p�type carriers �holes�� Typically� the gate is made of degen�

eratively doped polycrystalline silicon �or polysilicon� instead of a metal� Output leads are

bonded via ohmic contacts to the gate and the substrate�

When a potential is applied between the gate and substrate� a region develops in the

substrate underlying the gate that is swept free of p�type carriers by electrostatic repulsion

�Figure ��� �b��� Any electrons that may appear in this region �e�g�� via injection or gener�

ation� will be attracted to the gate and thus will congregate below the oxide layer� Because

the p�type carriers have been repelled from this region� the electrons are protected against

recombination� and the quantity of charge which they represent in the aggregate � called a

charge packet � will be preserved inde	nitely� This region is called the depletion region� and

the electrostatic barrier that de	nes it is called a potential well�

Each storage site can hold only a 	nite number of electrons before it begins to over�ow�

This number is called the �full�well� capacity and generally �for CCD imagers� ranges from

about �
�


 to about �

�


�

Once the charge packet has been formed� it remains to pass the packet along the array

from one storage site to the next without altering its contents� The information represented

by the value of the charge packet cannot be known until that value can be outputted from

the chip� The basic and most common mechanism for the transfer of charge packets is the

three�phase clocked approach shown in Figure ���� The 	rst phase is the application of a

potential to the A sites� creating potential wells� The second phase is to apply a potential to

the B sites as well� thereby spreading the charge packet between the A and B sites� The third

phase is to remove the potential from the A sites� which completes the process of moving

the charge packets from the A sites to the B sites� In the next three phases� the packets are

moved from the B sites to the C sites� and so on� From this description� one may understand

why early CCD delay lines were referred to as �bucket brigade devices��

Although one of every three sites is not used during each cycle� one may see that this
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Figure ���� �a� A Metal Oxide Semiconductor �MOS� capacitor� �b� Depletion region in the

MOS capacitor� when a potential is applied between the gate and the substrate�
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Figure ���� Charge transfer in a three�phase device� This represents one column� Rows go

into the paper� Six steps are required to move the charge one pixel ����
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empty site provides the necessary function of separating each charge packet from the next

one� Likewise� one may see that when a three�phase clocking method is used� the available

site size �and therefore the maximum site capacity� is reduced to one�third� For video

applications� for example� each pixel must be broken into three areas� only one of which may

be optically active� so sensitivity is necessarily reduced�

Because of the capacity and sensitivity constraints of the three�phase system� other ap�

proaches have also been developed� By changing only the clocking method� for example�

a four�phase approach may be used which allows an adjacent two of every four sites to be

active at a time� thereby increasing pixel capacity to one�half� One may obtain two�phase

operation by modulating the thickness of the oxide layer� and chip designs that permit one�

phase clocking also exist� It is believed that our Kodak MEGAPLUS ES ��
 camera uses a

three�phase clock� but the engineers we spoke to could not de	nitively con	rm this feature�

In a two�dimensional array� the packets in each column are transferred as described above�

each column acting independently but in synchronization with all of the others� Each column

empties into a shift�register row which operates in the same fashion as the columns but on

a di�erent timing scheme� That is� every time the column charge packets travel one site

down the array� the column transfer operation must pause while the entire shift register is

transferred sequentially through the terminal site� This terminal site� the last site on the

array� is a diode which converts each incoming charge packet into a potential �i�e�� a voltage��

The stream of varying potentials may be ampli	ed before being outputted from the chip as

a raster image signal for further processing �including digitization��

����� CCD imaging architectures

In an imaging CCD� the charge packets are created by the photoexcitation of bound electrons

into a free state by incident photons� and the subsequent migration of these free electrons

into the depletion region� �As an aside� we note that the depletion region is usually so

shallow that few free electrons are actually generated within it�� So long as light is incident

on the array� this process will continue� One may easily realize that the continuation of this

process after image capture and during the transfer of the charge packets would cause image

degradation�

One solution to this problem is the use of a mechanical shutter synchronized to the

capture�transfer timing� A better solution� called �electronic shuttering�� uses di�erent areas

of the chip for capture and transfer� The transfer gates are covered with an opaque mask

�
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Figure ���� Basic architecture for a full frame CCD ����

so that the packets being transferred will not be corrupted� As a consequence� the array

may be illuminated constantly without a�ecting the transfer process� thus increasing camera

sensitivity� On the other hand� it should be noted that division of the chip into two areas

necessarily decreases the area used for image capture� thereby decreasing camera sensitivity�

At least two main divisional con	gurations exist� In a frame transfer con	guration� the

active and shielded areas of the chip are completely separated� as shown in Figure ���� At

the end of the capture period� the packets from all of the active sites are simultaneously

dumped into corresponding sites in the shielded array� and the transfer process begins� Note

that a new capture period may begin at the same time the transfer process begins� Because

of the physical concentration of the active sites and the high area sensitivity that results�

high�performance cameras for scienti	c applications usually contain frame transfer CCDs�

In the interline transfer con	guration� lines of storage sites for image transfer are fab�

ricated next to each line of active sites� as shown in Figure ���� Photodiodes rather than

MOS capacitors are most often used for the active sites in such arrays �as is the case in our

Kodak camera�� The main disadvantage of this con	guration is that as little as �
 � of the

chip area may be available for image generation� resulting in a severe loss of sensitivity� For

this reason� a microlens array is usually positioned adjacent to the chip surface to increase

the �	ll factor�� The microlens array contains one lens for each pixel� which focuses the light

incident on the entire pixel onto the area of the active site�
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Figure ���� Interline transfer architecture� The charge is rapidly transferred to interline

transfer registers via the transfer gate� The registers may have three or four gates ����

����� Other features of CCD camera chips

If the depletion region of an active site is 	lled beyond capacity� the excess charge will

spill over and contaminate adjacent sites in a process called �blooming�� Spill�over between

adjacent columns is prevented during fabrication� but a particularly strong local illumination

may saturate most of the length of the a�ected columns� Blooming suppression combats this

e�ect with anti�blooming drains that suddenly �atten the response of the active site above

a certain intensity�

In some cameras� such as our Kodak camera� the bias point of the anti�blooming drains

is variable� While reducing the bias point necessarily reduces the array sensitivity� in some

applications such a tradeo� may be acceptable� In cameras used to monitor automobile

tra�c� for example� increased resistance to blooming caused by headlights may be worth

some loss of sensitivity�

Our Kodak camera also has a dual�channel transfer con	guration� In this structure� the

even and odd rows of the array are processed and outputted through two separate channels�

This con	guration allows faster data throughput� our camera can supply �
 frames of �


�

�


 pixels per second� while a single�channel version of the same camera can only supply

�� frames per second� With respect to noise analysis� however� it is important to recognize

the fact that pixels in adjacent rows may not be subject to the same noise processes at any

given time� This disparity is especially important when considering frequency�dependent

�



processes� such as the Modulation Transfer Function �MTF� as discussed in Section � below�

��� Noise sources in a digital CCD camera

In this section� various types of noise sources in a CCD camera are discussed ���� Dark and

photoresponse noises are distinguished� CCD�generated noise �e�g� 	xed pattern noise� and

noise generated by support electronics �e�g� readout noise� are distinguished� Other noises

such as interpixel e�ects �e�g� blooming and smear� and optical e�ects such as point�spread

functions are also discussed�

����� Overview of relevant noise processes

Although in�camera digitization o�ers good protection against transmission�line noise� the

signal outputted by the camera is only a �awed representation of the image which is incident

on the CCD array� For one thing� the photosites are like snow�akes in that none is exactly

like any one of the others� and each site will respond somewhat di�erently to the same level

of luminous excitation�

Likewise� in any such device that is operating above absolute zero� electrons are generated

thermally as well as optically� Once generated� each electron is indistinguishable from any

other� so some portion of the charge packet is necessarily always invalid� Moreover� each site

responds di�erently to this noise process as well�

Finally� the on�chip paths by which the charge packets are read out from the chip and

converted into potential values� and the o��chip circuitry through which these signals are

ampli	ed and digitized� introduce errors of their own that may vary with signal amplitude

and frequency� An illustration of the imaging system path and some of the noise processes

associated with each step is presented in Figure ����

����� Dark��eld response and nonuniformities

As mentioned above� the electrons that migrate into the depletion region may be generated

by thermal as well as photoelectric processes� Therefore� some signal will be outputted even

when the array is in total darkness� The result of this phenomenon is called the camera�s

dark�	eld response�

Dark�	eld response will vary from pixel to pixel� This noise process is also extremely

temperature�dependent� for example� the noise level doubles when the array temperature

�
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Figure ���� An illustration of the imaging system path and some of the noise processes

associated with each step

increases by � to � degrees Celcius� For this reason� measurements should be taken only after

the camera has warmed up� �In order to obtain an accurate measurement of the dark 	eld�

we believe that it is also important to allow the array to warm up under normal operating

illumination conditions� A focused image of any intensity will certainly a�ect the surface

temperature of the array� and thereby in�uence the dark component of the total response��

The magnitude of the dark�	eld response is also� of course� linearly dependent on the

exposure time� i�e�� the period of time during which electrons are being collected� Although

thermal electrons may also potentially corrupt the charge packets during the transfer process�

transfer across the chip occurs so rapidly that this quantity is usually ignored�

Fortunately� the thermal noise process is simply additive� So long as we can reliably

estimate the number of such electrons collected at a particular site� it is a trivial matter to

subtract that measure from the gross response�

CCD chips are usually �if not universally� fabricated so that some of the active sites on

the periphery are shielded from illumination� �An area of isolation pixels also separates these

dark pixels from the active ones in order to prevent light leakage�� During image processing�

the values returned by the dark pixels may be used to calculate an estimate of the magnitude

of the array�s dark response� which may then be subtracted from the outputted image� As

the response of each active site is unique� however� the accuracy of this approach to dark�	eld

compensation is not optimal�
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Our Kodak camera includes a feature called �dark�clamping� whereby such an estimate

of the dark 	eld is automatically subtracted from the image� While not exactly accurate

and therefore not entirely appropriate for our present purposes� this feature is considered a

signi	cant advantage for consumer applications� In �dark�clamping�� the dark�	eld estimate

is automatically calculated and subtracted� so that the camera�s output has already been

compensated� As the process is transparent and occurs directly at the chip output� it is not

necessary to keep track of exposure time or temperature� It may be possible to disable this

function in our camera via a software command� but the particular Kodak engineers with

such knowledge have so far been unresponsive to our requests�

����� Photoresponse nonuniformity

Just as the active sites vary in their response to thermal excitation� they also vary in their

photoresponse� In other words� each pixel will react di�erently to the same level of incident

illumination� The degree by which the number of photoelectrons collected by a particular

site varies from an arbitrary standard amount may be thought of as a local �gain factor�� as

this noise process is multiplicative with respect to the level of excitation and the response of

each site is generally quite linear�

The dark�	eld and photoresponse nonuniformities together comprise the array�s �	xed�

pattern noise�� Generally� 	xed�pattern noise is de	ned only at each pixel and has no spatially

varying component� In other words� there will be no correlation between the 	xed�pattern

noise at two adjacent pixels� However� we note that there will usually �if not always� be a low�

frequency component to the photoresponse nonuniformity� caused by unavoidable variations

in the substrate thickness� These variations cause photons of the same wavelength to interact

di�erently at the quantum level at di�erent points on the array� This e�ect is not a separate

factor� though� and is incorporated into the general photoresponse nonuniformity�

����� Charge�transfer e�ciency

Although each transfer gate successfully moves well over ����� � of each charge packet to the

next gate in the column� some small amount of charge stays behind� When the incident image

contains sharp �i�e�� high�frequency� transitions between areas varying greatly in amplitude�

this process will tend to 	lter out the high spatial frequencies by blurring the transitions�

This e�ect increases with array size� i�e�� with the number of transfers required to move each

packet o� of the array� Charge�transfer e�ciency is a component of the array�s frequency

�




response and therefore is included in the array�s modulation transfer function �Section ���

����� Other interpixel noise mechanisms

As discussed in Section � above� blooming occurs when the charge in a saturated pixel

over�ows into adjacent pixels in the column� By the anti�bloomingmeasures described above�

the post�saturation response can be largely reduced� but it cannot be eliminated� The extent

to which a charge packet has been corrupted by over�ow is of course indeterminable� and in

processing the resulting images this e�ect must be kept in mind� Whenever a saturated pixel

is encountered� the signal outputted from its column neighbors must be considered suspect

and possibly corrupted�

Another source of interpixel noise� called �smear� �or sometimes tunneling�� occurs when

photoelectrons generated at one site migrate instead into a neighboring site� �This process

is quite di�erent from the process� also called �smear�� which occurs when transfer occurs in

a non�shielded array while the array is still being illuminated�� As this process is related

to signal frequency� we would expect it to be included in the array�s modulation transfer

function �Section ���

����	 Reset noise

Reset noise arises when the capacitor which converts the charge packets into potential values

is not completely reset between packets� As this noise is highly temperature�dependent� it is

also referred to as kTC noise� where k is the Boltzmann constant� T is the temperature and

C is the capacitance of the device� In most if not all CCDs manufactured today� this noise

process has been virtually eliminated through the use of correlated double sampling �CDS��

whereby two samples are taken from each packet and averaged to remove the reset error�

����
 Readout noise

As the signal generated by the CCD array is exceedingly small� it must be ampli	ed before

processing� Each of the ampli	cation and processing stages necessarily introduces its own

noise process� which will generally be dependent on temperature and signal frequency� On

the whole� though� this noise is random in time and cannot be compensated�

��



����� Quantization noise

Conversion of the analog array signal into a digital quantity necessarily results in a certain

loss of information� While this noise is completely random and unknowable� it is easily

characterized as a zero�mean process whose variance is a function of the number of bits in

the digital output�
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Chapter �

Estimation of CCD Noise

This chapter describes the methods for estimating the parameters of the temporal as well as

the 	xed pattern noise of a CCD camera� Healy�Kondepudy noise estimation procedure is

used to estimate the temporal noise� An experimental protocol is developed for estimation

of 	xed pattern noise� and the detailed mathematical analysis for least squares estimation

of the noise is presented� Results of noise estimation using the Kodak ES ��
 camera are

described�

��� Description of Healey�Kondepudy noise estimation

procedure

Following a common model of CCD behavior� Healey and Kondepudy ��� express the digital

output D at each pixel as

D � �KI � EDC �NS �NR�A�NQ�

where

� K is a factor that characterizes the pixel�s photoresponse�

� I is the incident illumination�

� EDC is the expected number of dark electrons�

� NS is the shot noise�

� NR is the readout noise�

��



� A is the analog gain� and

� NQ is the quantization error�

To reduce this expression� Healey and Kondepudy make the following three assumptions�

�� The photoresponse factor K is very close to � for all pixels�

�� The expected number of dark electrons EDC is nearly constant across the array� and

�� The incident illumination I is nearly constant across the array�

Using these assumptions� and representing the image�wide means of I and EDC as �I and

�EDC � the expression for D is reduced to the form

D � ��N�

where

� � A��I � �EDC�

and N is a zero�mean random variable characterized by

��

N � A���I � �EDC� � ��

C �

Here the noise term ��

C is assumed independent of the number of collected electrons�

��

C � A���

R �
q�

��
�

These relations imply

��

N � A�� ��

C �

so by taking the di�erences between pairs of similar images �i�e� �� � ���� Healey and

Kondepudy estimate the parameters A and ��

C �

��� Development of pattern noise ��at��eld� experi�

mental protocol

In this section� a history of what we have observed is presented� including the drawbacks

of our previous setups� and concluding with a detailed description of the 	nal test bench�

Possible sources of error are noted� for example� the failure to consider spectral content� and

the use of neutral density 	lters in the optical path�
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����� Fluorescent sources

As a 	rst step� we resolved to determine the �at�	eld response of our camera� i�e�� the level

of interpixel variation when each site in the entire array was presented with the same level of

excitation� Because we had a relatively large computing capacity available� it seemed that

we could capture and process large numbers of images fairly quickly� averaging the responses

over time in order to eliminate temporal variations� and thereby develop a �at�	eld model

that could easily be veri	ed� Obtaining a 	eld illumination that was uniform in both time

and space� however� turned out to be problematic� as those with more optical engineering

experience might already know�

First� we concentrated on using re�ected excitation� We reasoned that if transmitted

light were used� it would be impossible to completely remove the image of the light source

from our 	eld� even through di�using sheets and a defocused lens� Therefore� re�ection from

a Lambertian surface appeared more promising in this regard�

Although indoor �uorescent lighting is prevalent and apparently very uniform� it im�

mediately became obvious that a �uorescent lighting source would not be suitable� The

accuracy of our results� and speci	cally their immunity to temporal variations� would de�

pend on our ability to collect a large number of images under identical excitation conditions�

Conventional �uorescent lights� of course� �icker at approximately a 
 Hz rate� rendering the

level of illumination across any sequence of shuttered images very non�uniform and therefore

unusable for our purposes�

High�frequency �uorescent sources are available� being priced at about ���


 for a �
�

inch square di�use source operating at �� kHz or higher� Even through a di�using layer�

however� such sources are not uniform enough to present a transmitted �at�	eld� and would

have to be used as target illuminators� We soon discovered that the problem of evenly

illuminating a di�using target was not trivial� so this approach was not an optimal solution

either� �For a target� we used an opaque sheet of coated matte paper that was supplied as

a protective spacer for laser�printer color transparency blanks��

We did obtain good uniformity using the blank screen of a laptop computer as a transmit�

ted �at�	eld� The internal con	guration of such a device is unknown to us� but the operating

frequency seemed to be high enough to provide temporal uniformity� It was impossible to

vary the brightness of this 	eld while maintaining the spatial uniformity� though� Although

when white the pixels were uniform� their brightness varied from row to row when they were

darkened� Also� the overall intensity of the source was insu�cient to permit the use of neu�

tral density 	lters to obtain di�erent brightness levels� Although such a source is convenient

��



and generally available� the di�culty of evenly varying its brightness makes it unsuitable for

the purposes of our model�

����� Incandescent sources

We found that an AC�powered incandescent source was also not entirely free from temporal

�icker� While DC�powered incandescent sources are available� we also found it impossible

to obtain spatially uniform illumination from such a source� We tried bulbs mounted in

re�ectors and an overhead projector� each shone through a di�using sheet� but were unable

to completely remove the 	lament image from the illumination�

Consultation with a Kodak research scientist gave us some insights into general optical

laboratory practices� We learned that DC�powered incandescent sources may be suitable for

�at�	eld production� but only if a precision unit costing several thousand dollars is used�

Also� such experiments should be conducted in a temperature�controlled room� and after the

light source has been stabilized for at least �� hours� The light from such a source cannot

be used to illuminate a �at surface� but rather must be ported into an integrating sphere�

which is a hollow sphere with very small ports and a Lambertian inner coating� Besides

being very expensive as well� such a sphere is of little use after the CCD sensor is mounted

into the camera body�

����� Solar source

While we were investigating the suitability of other sources� we also tried to obtain a �at�	eld

from a di�use surface posed near a window� Note that if properly monitored� the short�term

temporal uniformity of the sun as a source can be excellent� as sunlight does not �icker�

However� we found it generally impossible to reliably duplicate a uniform illumination of a

�at di�use surface� Every time we posed the target �on an artist�s easel� mounted to a �at�

uniform� and non�re�ective surface�� the pattern of light distribution varied�

As a location providing no less than �
 degrees of completely unobstructed open sky

was available� we began to consider using transmitted sunlight as a �at 	eld� Although the

resulting setup could not be as completely speci	ed as if a particular model of xenon lamp�

for example� was used� the experiment could still be duplicated anywhere that an expanse of

open sky was available� Also� we realized that the spectral content of the illumination could

vary without our knowledge and a�ect the camera�s response� The freedom from �icker and

the apparent uniformity of a patch of blue sky far from the sun led us to investigate this

�



camera

window

acetate

Figure ���� The test setup used for capturing �at 	eld images using the solar source�

possibility�

We began by thoroughly cleaning the window inside and out� Then� a double layer of

matte acetate was mounted as a di�using target to increase uniformity and also to reduce

the illumination level somewhat� The camera lens was positioned about six inches away from

the acetate� pointed at the center of the open expanse� and focused to in	nity� This test

setup is illustrated in Figure ����

We used a Nikon ��mm f���� Micro�Nikkor lens for most of our experiments� as the

performance of this lens was rated at the top in several surveys we found on the Web� The

F�mount allowed us to always mount the lens in exactly the same rotational orientation�

although we later found the lens to have excellent symmetry of response with respect to

the optical axis� In order to obtain varying levels of sensor illumination� we varied the lens

aperture �minimum aperture� f���� and also used high�quality neutral density 	lters�

We conducted our experiments under clear skies in April ���� between �
�

 AM and ��



PM� We found that after ��

 PM� the level of illumination began to decrease perceptibly

from minute to minute� Images were collected in sets of �

 at no less than �� fps� so each

set was collected in less than � seconds� Each run of sets� characterized as a number of sets

taken at several di�erent apertures� was collected as quickly as possible �generally within �


minutes� to provide a tentative basis for comparing the lens response at di�erent apertures�

��



Uniformity of illumination level within each set of �

 images was veri	ed by taking the

average pixel value for each image� identifying the maximum among the �

 averages� and

characterizing the other averages as percentages of the maximum� A set� and consequently

the entire run� was rejected if a deviation of more than � � was discovered for average image

values of �

 gray levels or more� on a scale of 
 to ���� For average values of under �

 gray

levels� deviation of from � to � � were sometimes accepted� as we recognized that camera

noise processes contributed a greater portion of the error in such images�

Once the uniformity of each set within a run had been veri	ed� each set was condensed

into two �


��


 ���bit �oating�point arrays� The 	rst array was the pixel�by�pixel mean

of the �

 images of the set� and the second array was the pixel�by�pixel variance� These

two arrays became the input parameters for the model described in Section  below�

��� Development of pattern noise experimental analy�

sis

In this section� a detailed mathematical analysis of the linear system model is presented�

Assumptions are identi	ed and discussed�

We begin by assuming that the behavior of each pixel at any particular moment in time

can be described by an equation of the form

y � mx� c � � � E�y� � � �����

where

� y is the digital output signal�

� x is the incident illumination �with x� de	ned as zero��

� c is the constant portion of the dark 	eld noise� or additive 	xed pattern noise �FPN��

� m is the constant portion of the interpixel photoresponse nonuniformity or multiplica�

tive FPN�

� � is a noise term that includes all other system noises such as shot noise� readout noise�

system nonlinearities� and quantization error�

� E�y� is the expected value of y�

��



The temporal noise � can be modelled as a zero mean Gaussian variable with a variance

V ��� � V �y� � w� � w�E�y� �����

The term w� corresponds to the constant portion of the noise variance� caused mainly by

the readout noise� whereas the w� term corresponds to the shot noise� which is Poisson

distributed with a variance proportional to the output mean� The resultant noise due to

these terms can be approximated with a Gaussian distribution�

If the FPN parameters m and c can be determined in advance� the FPN can be compen�

sated prior to further processing� This is likely to improve the performance of the detection

algorithm� Also� the temporal noise parameters w� and w� would help us determine the

performance of the algorithm�

Let x�� x�� x����xn denote a number of intensity values at which observations are made�

with x� � 
 denoting the zero intensity� For each intensity� we can write�

yi � mxi � c� � �����

Let the mean and variance of a yi be denoted by Ei � E�yi� and Vi � V �yi� � ��

i � Then�

Vi � w� � w�Ei �����

An estimate of the mean and variance can be obtained by using the sample mean and variance

of a number of images obtained under identical conditions� A set of such equations obtained

by substituting these in ����� can be solved in least squares sense to give the values of w�

and w��

For determining values of m and c for each pixel� the following method is used� Denoting

the average over N observations with an overbar� we have

�yi � mxi � c� ��i �����

Since �i is assumed to be normally distributed as N�
� �
�

i �� �yi is normally distributed with

parameters

E��yi� � E�yi� � mxi � c

V ��yi� � V ���i� �
V ��i�

N
�
��

i

N

Consider a neighborhood centered at the current pixel� Assume that the neighborhood is

small enough so that the incident illumination xi remains approximately constant across it�

but large enough so that the constituent pixels� nonuniformities will average out to provide

��



us with a good measure of the local incident illumination� Denoting the average value over

this neighborhood by the operator �s� we have

�s��y�� � �s�c� � �s�����

�s��yi� � �s�m�xi � �s�c� � �s���i�

giving

xi �
�s��yi�� �s��y��� �s���i� � �s�����

�s�m�

The noise terms �i� are assumed to be independent and distributed as N�
� �
�

i �� We also

assume that these terms are uncorrelated in space� i�e� that the values �i for any pixel are

independent of the values for the pixel�s neighbors� Then

�s���i� � N

�

�

��

i

NNs

�
�

where Ns is the number of pixels in the averaging neighborhood� Because Ns will be on the

order of �
��

� the terms �s���i� and �s����� will be distributed very close to zero� and we

may discard them in the derivation�

Note that only the relations between the various illumination levels xi are important� and

not their absolute values� We may therefore choose any convenient scale for our estimating

xi� Setting �s�m� equal to �� we obtain an estimate of xi given by�

�xi � �s��yi�� �s��y�� ����

From ��� and �� we get

�yi � �xi � �m� ���xi � c� ��i�

We de	ne the following variables�

z� � c� �s��y���

z� � m� ��

After substitutions� we obtain the expression

�yi � �s��yi� � z��xi � z� � ��i�

We may now express the behavior of any particular pixel across various levels of incident

illumination with the linear system

y � Az � ��

�




where

y � ���y� � �s��y���� ��y� � �s��y���� � � � � ��yn � �s��yn���
T �

A �

�

 �x� � � � �xn

� � � � � �

�T
� � a� a� � � � an �

T
�

z � �z�z��
T �

� � ���� � � � ��n�
T

�

We may also assume that the noise terms �i are uncorrelated in time� so that the error

� � �y � Az� is distributed as N�
� R�� where

R �
�

N
diag���

�
� ��

�
� � � ���

n��

Therefore� we can apply least�squares methods to estimate z� as well as its covariance P �

��	 Results of noise estimation

In this section� we describe the results of estimating the spatial and the temporal noises�

The spatial noise can be reduced by using the estimates of its parameters for every pixel�

to compensate it� However� the temporal noise varies from frame to frame� and therefore

cannot be reduced by such a method�

����� Estimation and correction of spatial noise

In this section� results showing signi	cant reduction of pattern noise in time�averaged images

are presented� The model�s lens�independence is demonstrated� Failure of the model to

reduce noise in individual images is also noted�

CCDs are universally reported to be extremely linear devices� Indeed� the basic assump�

tion of our camera model above is that each pixel operates in essentially a linear fashion�

In order to test that assumption� we conducted preliminary experiments to determine the

camera�s response at di�erent �at�	eld illumination levels� Results of these experiments are

shown in Figure ���� where each point represents a mean value of the central �


 � �




pixels of the array� and Figure ���� where the mean dark value has been subtracted� We

varied the illumination level by changing the lens aperture� and assumed for the purpose of

these experiments that the illumination thereby changed in perfect powers of �� Therefore�

��



            

Figure ���� Camera�s response at di�erent �at�	eld illumination levels� Each point represents

a mean value of the central �


� �


 pixels of the array�

            

Figure ���� Camera�s response at di�erent �at�	eld illumination levels� after subtracting the

mean dark value� Each point represents a mean value of the central �


 � �


 pixels of

the array�

��



            

Figure ���� The plot of the signal variance against the signal mean�

the largest error in these plots is in the ordinate �illumination level�� and not in the abscissa

�camera response��

For convention�s sake� we also present a rudimentary photon transfer curve in Fig�

ures ��� and ���� This curve� a plot of signal mean against signal variance� is the most

commonly used CCD performance curve� Generally� three areas should be discernible� cor�

responding to the noise process that predominates in each section� To the left� the curve

is theoretically �at� as readout noise predominates at low levels� In the center� the curve

has a slope of �� as photon shot noise is the predominant noise process here� On the right�

the curve has a slope of �� corresponding to pixel nonuniformity noise �i�e�� 	xed pattern

noise�� Of these three noise processes� of course� only the last is in any way deterministic

and compensable� The point where the second and third sections meet represents the signal

level at which 	xed pattern noise limits the camera�s sensitivity� In these terms� the object of

this research is essentially to move this point to the right� Our 	nal report will include more

re	ned versions of this curve� updated to incorporate the large amounts of data obtained

since these plots were generated�

Our primary lens was the Nikon ��mm Micro�Nikkor� and its response to a high�level

�at�	eld illumination at apertures of f�� and f�� is shown in Figures ��and ���� �Unless

noted otherwise� we use examples taken at high levels of illumination throughout this section�

��



            

Figure ���� The plot of the signal variance against the signal mean after subtracting the

mean dark value�

Such images contain the highest noise levels� and also the greatest proportion of compensable

noise�� The reduction in lens response as one moves away from the image center is clearly

evident� More puzzling to us is the fact that the response becomes more non�uniform as

the aperture becomes smaller� as lenses are generally assumed to perform better at smaller

apertures� This e�ect is illustrated in Figure ��� by taking a cross�section of the image �i�e��

the center row� at di�erent apertures� E�orts to consult with a local optical expert in order

to explain this e�ect are ongoing�

Figure ��� shows cross�sectional results at aperture f�� for several di�erent runs of images

�collected as described in section � above� over a period of days or weeks�� each at a di�erent

level of incident illumination� In Figure ���
� these curves are normalized to correspond to

Run  � at the central pixel� One can see that errors as great as � � as evident on the left side

of the image� As we would expect the lens response at any one point to be perfectly linear

with respect to changing illumination levels� we must assume that these errors represent a

�aw in our �at�	eld illumination� One possible cause is that �with reference to Figure ����

our tests were conducted in a room with white walls� and re�ections from the room onto

the acetate and thereby into the camera may have corrupted our results� Note� however�

that the errors are generally much smaller than � �� and that the largest normalization

factor is nearly �� Overall� then� this 	gure demonstrates that our �at�	eld setup is quite
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Figure ��� The response of the Nikon lens to a high�level �at�	eld illumination at aperture
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Figure ���� The cross section of the lens response at the center row� showing plots of the

normalized gray level� for a number of aperture settings�

consistent� We would expect that results could be further improved by posing a black matte

shield around the camera to keep out re�ections�

One of the runs was arbitrarily selected� and the procedure described in Section  above

was used to develop a camera noise model� Figure ���� shows the result of applying that

model to the image of the highest�level set in this run� Essentially� then� we are applying

the noise model to itself here� Therefore� this image represents the limit to the amount of

noise reduction we can expect� Assuming that the image presented by the lens is a smoother

version of the 	nal curve� we can see that a very small level of noise can be expected�

Figure ���� shows the result of applying the noise model to the high�level set image of a

di�erent run �i�e�� one taken on a di�erent day�� It is immediately obvious that our model

gives a signi	cant degree of improvement�

Figure ���� shows the model as applied to a low�level set image of a di�erent run� The

level of improvement is much reduced� as the level of compensable �i�e�� deterministic� noise

in such an image is negligible�

As our model is speci	c to the array� and not to any particular lens� we also tested

its application to set images from a di�erent lens� Figures ���� and ���� show the �at�

	eld response of a Fujinon zoom lens set to ���� mm at apertures of f��� and f��� It is
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Figure ����� Result of applying the camera noise model to an image from a high�level set�
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Figure ����� Result of applying the camera noise model to an image from a high�level set of

a di�erent run�

��



300 320 340 360 380 400 420 440 460 480 500
22

23

24

25

26

27

28

29

column number

gr
ay

 le
ve

l

Application of noise model to new image (center row, exposure 200)

Image as collected                        
After subtracting additive component      
After division by multiplicative component

Figure ����� Result of applying the camera noise model to an image from a low�level set of

a di�erent run�

immediately apparent that the response of this lens is not so precise as that of the Nikon

lens� perhaps due to the mechanical compromises necessary for the zoom operation�

Figure ��� shows the result of applying our model to a high�level set from this lens�

Comparison to Figure ���� shows that many noise spikes occur in the same location� as

would be expected� However� the general shape of the curve shows the same dip to the right�

suggesting again that our �at�	eld is slightly �awed� Improvement does not quite reach the

level of that in Figure ����� but is excellent nonetheless�

Finally� we note that in all of the results above� the noise model was applied not to

individually captured images� but rather to the mean image taken from �

 individual images�

Therefore� temporal �nondeterministic� noise was signi	cantly reduced� In Figure ����� we

applied the noise model to an individual image� One can see that our model had little

e�ect beyond smoothing the quantized levels� The results above clearly demonstrate that

for a set of time�averaged images� our model can o�er a signi	cant reduction in camera�

generated noise� Unfortunately� for individually captured images� temporal noise processes

predominate which cannot be removed�
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Figure ����� Flat�	eld response of a Fujinon zoom lens set to ���� mm at f��� aperture�
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Figure ����� Flat�	eld response of a Fujinon zoom lens set to ���� mm at f�� aperture�
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Figure ���� Result of applying our model to a high�level set from the Fujinon lens�
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Figure ����� Result of applying our model on an individual image� instead of the mean of

images� The model has little e�ect beyond smoothing the quantized levels�
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����� Estimation of temporal noise

To estimate the temporal noise in the camera images� we collected runs of sets of images�

Each set contained �

 images �i�e� N � �

�� collected at a rate greater than �� fps �i�e� over

a period of less than � seconds�� In order to verify that the illumination level was constant

across this period� we took the image�wide mean of the central �


� �


 pixel region of

each image� and found the di�erence between the means of the brightest and darkest images

in the set �relative to the mean of the darkest image�� For brightly�lit images �i�e� mean

gray level from ��
 to ����� the maximum such di�erence we accepted was ��
��! most

di�erences were less than 
���� At lower levels of illumination� the increasing proportion of

temporal noise caused this di�erence to rise� but even at the lowest illumination levels we

accepted no runs with di�erences greater than ��� Each run comprised three to eight sets

of images� taken at progressively narrower aperture settings� We collected a run within as

short a time as possible� to permit us to assume if necessary that the available illumination

had remained constant �such an assumption is not necessary for the model described here��

Each accepted set of images was later condensed into two �oating�point arrays of size

�
��� �
��� representing the sample mean and sample variance values at each pixel�

For estimating the temporal noise parameters� imagewide means of these arrays are used

as estimates of Ei and Vi in the equation�

Vi � w� � w�Ei �����

The equation is solved using least squares to obtain the paramters w� and w�� The plot of

Vi to Ei is shown in Fig� ����� Its slope is w� and the y�intercept is w�� The values of these

parameters obtained are�

w� � 
����� w� � ��� �

�� �����

This corresponds to a noise variance of �� � 
���� or standard deviation of � � 
���� for

the background value of ���� This value is used in experiments for testing target detection

algorithms�
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Figure ����� The plot of the sample variance Vi against the sample mean Ei for di�erent

values of Ei� It is seen that the plot is approximately a straight line� from which the

parameters of the temporal noise can be obtained
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Chapter �

Future Work

The following avenues of future work can be explored� The spatial frequency response of the

optical system consisting of the lens and the camera� can be characterized using the concept

of Modulation Transfer Function �MTF� as described below� Also� the camera noise models

can be validated using a statistical hypothesis test�

	�� Description of Modulation Transfer Function esti�

mation

The spatial frequency response of an optical system is commonly characterized with a plot of

the system�s modulation transfer function �or MTF�� which shows the normalized magnitude

of the system�s response to a range of input frequencies� The MTF may be expressed as

the Fourier transform of the system�s line spread function �LSF�� which is the response to a

�at�	eld containing a single sharp line� In other words� the LSF is a two�dimensional analog

to an impulse response� �For the purposes of this overview� we will ignore the fact that a

CCD array responds di�erently in the row and the column dimensions��

Traditionally� the LSF of a CCD is obtained by projecting a very narrow band of light

onto the array� In an SPIE paper� Lin and Chan describe a method of computing the MTF

from the edge�spread function� which may be di�erentiated to obtain the LSF ���� The

edge�spread function is obtained from a high�contrast target� making the measurement more

�exible� more accurate� and less expensive than the traditional method of LSF measurement�

��



	�� Noise model validation

An important issue to be addressed as part of this research is the validity of the noise

models used to generate synthetic images� In other words� one must answer the question of

whether the computer generated images are indeed a set of representative images suitable

for the performance characterization of the detection algorithms� This can be done by using

a statistical hypothesis test described in ����
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Part II

Detection Algorithms



Abstract

A sequence of images contains more information than a single image� Due to this reason�

image sequence analysis has been used in computer vision for quite some time� In particular�

a sequence of images is useful for object detection when the camera moves relative to the

object� Due to the relative motion� objects at di�erent distances from the camera have

di�erent image motion� Using this property� one can obtain information on structure of the

��D scene as well as the relative motion between the camera and the scene� Furthermore�

the individual images are corrupted by camera noise� Use of a sequence of images enables

suppression of this noise for reliable detection of low contrast objects�

A computer vision based system that can aid the pilot to detect obstacles in the �ight

path of an aircraft can be useful for avoiding collisions� Such a system would also be useful

for development of a Synthetic Vision System �SVS� proposed for use in a High Speed

Civil Transport �HSCT� aircraft with limited cockpit visibility� For this purpose� we had

implemented a number of algorithms to detect airborne obstacles using image sequences

obtained from a camera mounted on an aircraft� The performance of these algorithms was

characterized in presence of camera noise using theoretical and experimental methods� Since

the performance degrades in the presence of background clutter� a special approach to address

the problem of hazard detection in presence of clutter was studied� This approach uses the

di�erences in the behavior of translation and expansion of image features corresponding to

the objects on a collision course and the background clutter� Algorithm fusion for combining

di�erent algorithms to overcome their individual limitations was also studied�

In addition to this work on detecting objects on collision course� algorithms for detecting

objects crossing the aircraft were designed and implemented on a real�time system� The

image processing and tracking steps of the system are described in this part� whereas the

hardware implementation is described in the next part�
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Chapter �

Introduction

Image sequence analysis has been widely used in computer vision� This part describes the

use of image sequences for detection of airborne obstacles in the �ight path of an aircraft�

Continued advances in the �elds of image processing and computer vision have raised

interest in their suitability to aid pilots to detect possible obstacles in their �ight paths�

For the last few years� NASA has been exploring the use of image sequences for detecting

obstacles in the �ight path of an aircraft� NASA Langley Research Center supported a

project to enable pilots to �see through fog� using Passive Milli�Meter Wave �PMMW� images

of low resolution� For this project� Tang and Devadiga �	�� from our group had developed

methods to locate the runway and detect obstacles on and outside the runway� The resulting

output can be used by the pilots to decide whether to land or not�

Obstacle detection is also possible with visible�light image sequences� In the design of

a High Speed Civil Transport �HSCT� aircraft with a limited cockpit visibility� NASA has

proposed a Synthetic Vision System �SVS� in which high resolution video images would

be obtained using cameras mounted on the aircraft� These images can be used to detect

obstacles in the �ight path to warn the pilots and avoid collisions� For aircraft operations�

both airborne obstacles� as well as the obstacles on the runway surface should be detected�

Algorithms for detection of airborne objects from images are abundant in the published

literature� A systematic performance characterization of a number of target detection al�

gorithms was performed by using image degradation models for digital cameras� It was

observed that the algorithms that were studied have a good performance on images which

do not have background clutter� However� the performance degrades severely when back�

ground clutter is present� Thus� the goal of this work has been to design algorithms which

perform better in cluttered background environments� with low probabilities of false alarms

	



and mis�detections and capability of target detection early enough to avoid a possible colli�

sion� To achieve this goal� a special approach was used to discriminate hazardous objects on

collision course from the background clutter� Algorithm fusion was studied for combining

di�erent algorithms in a statistical framework� to overcome their individual limitations� The

performance of the fused algorithm was found to be better than the individual algorithms

under appropriate conditions�

This part of the report is organized as follows� Chapter � describes the basic� well�known

algorithms used for detection of airborne obstacles� These algorithms were tested on real

image sequences provided by NASA� In Chapter �� the performance of these algorithms

is experimentally characterized using the approach described by Kanungo et al� �	��� The

theoretical characterization of the algorithms� performance is described in Chapter 
� and

the experimental performance is compared with the theoretical performance�

The main contribution of the research for the detection of hazardous objects is described

in the next two chapters� A special approach is proposed for discrimination of objects

on collision or near�collision course from background clutter� This approach is described in

Chapter � where di�erences in the behavior of translation and expansion in the image are used

to separate hazardous objects from clutter� Chapter � describes the Bayesian methodology

used for combining detection algorithms in a statistical framework� Performance of fused

algorithm is compared with that of the individual algorithms�

In addition to hazardous objects� it is also useful to detect and track objects crossing

in front of the aircraft� A real�time system using pipelined image processing hardware was

designed for this purpose� Chapter  describes the image processing operations which are

performed by the pipelined hardware� and the tracking operations performed on the host

machine to form a complete real�time system�

Chapter � concludes the part and explores avenues for future work�
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Chapter �

Object Detection Algorithms

This chapter describes the algorithms that were implemented to detect airborne obstacles

in the �ight path of a �ying aircraft� Statistical theory used for target detection is �rst

described� followed by a number of basic steps useful for removing background clutter� am�

plifying the signal to noise ratio� and detecting objects having di�erent sizes and velocities�

Results obtained by using real image sequences are also described�

��� Background

NASA�s need for enhanced capabilities in obstacle detection using image processing requires

robust� reliable and fast techniques� These techniques should provide a high probability of

detection while maintaining a low probability of false alarm in noisy� cluttered images of

possible targets� exhibiting a wide range of complexities� The size of the image target can be

quite small� from sub�pixel to a few pixels in size� As an example� consider a Cessna aircraft

that has a length and wing�span of approximately �m ��� ft� and the fuselage diameter of

approximately 	��m �
 ft� �	��� The detection algorithm must be capable of detecting this

small target at least �� seconds prior to a possible collision to allow for corrective actions

by the pilot� Assuming that both the aircraft are traveling at 	��m�s ���� knots�� their

relative velocity can be as high as ���m�s ���� knots�� In such case� they would be ���� km

���� nautical miles� apart �� seconds before collision� Using a camera with a resolution of

�� pixels per degree� the image size of the aircraft is ��� � �� pixels from a side view� but
only �� � �� pixels from a front view� Furthermore� the detection algorithm must report
such targets in a timely fashion� imposing severe constraints on their execution time� Finally�

the system must not only work well under the controlled conditions found in a laboratory

�



and with data closely matching the hypothesis used in the design process� but it must be

insensitive � i�e�� must be robust � to data uncertainty due to various sources� including

sensor noise� weather conditions� and cluttered backgrounds�

Extensive work has been done on the problem of target detection� When the signal to

noise ratio is low� it is preferable to use the �track before detect� approach� In this approach�

an object is tracked over multiple frames before making a hard decision on the presence or

absence of a target� The simplest way to integrate the input images over multiple frames

is by temporally averaging them� When the image motion of the object is very small� as

in the case of an object being exactly on a collision course �	
�� this happens to be the

best approach� However� if the object has a signi�cant image motion� other approaches are

needed� Nishiguchi et al� �	�� proposed the use of a recursive algorithm to integrate multiple

frames while accounting for small object motion� A dynamic programming approach was

used by Barniv �
� and Arnold et al� ��� to detect moving objects of small size� The theoretical

performance of this approach was characterized by Tonissen and Evans �	���

The above algorithms perform well when the background is uniform� However� in real

situations the hazardous object should be detected not only against uniform background�

but also against backgrounds such as clouds� ground or water� The features introduced due

to a non�uniform background which interfere with object detection are collectively known

as clutter� Thus� the objective of the detection algorithms is to successfully detect the

hazardous object� without giving unnecessary false alarms from clutter� Subtraction of

consecutive images is often used to remove stationary clutter� However� an object on a

collision course could be nearly stationary in the image �	
�� Hence� this method is not useful

for our application� since it could remove the object as well� Alternatively� morphological

�ltering ��� removes objects of large size� usually corresponding to clutter while retaining the

objects of small size� This approach is useful in removing large clutter� such as clouds� But

it does not remove small�sized clutter�

��� Statistical decision theory for target detection

Statistical decision theory �	�� 	� can be used to design optimal or near�optimal detection

algorithms� as well as to characterize their performance� The input to the algorithm is a

sequence of images� each composed of a large number of individual pixels� These pixels are

degraded by various sources� such as atmosphere� lens� and camera noise� Based on the

statistical behavior of this degradation� the image pixels can be combined in space and time�






to make statistically optimal decision about the presence or absence of a target� For making

these decisions� probabilistic models of the signal and its degradation can be used�

Let H� and H� denote the hypotheses that the target is absent or present� respectively�

and P �H�� and P �H�� denote their respective prior probabilities� Let z represent the vector

of observations from which one is supposed to determine the presence or absence of a target�

By Bayes� rule� the posterior probabilities are given by�

P �H�jz� � p�zjH��P �H��

p�z�
� P �H�jz� � p�zjH��p�H��

p�z�
���	�

The ratio of these probabilities is given by�

P �H�jz�
P �H�jz� �

P �H��p�zjH��

P �H��p�zjH��
�
P �H��

P �H��
LH�z� �����

where LH�z� proportional to the ratio of the probabilities is called the likelihood ratio�

When the algorithm reports a target even where there actually is none� it is called a

false alarm� whereas when it does not report an existing target� it is called a mis�detection�

The performance of a detection algorithm is characterized in terms of false alarms and mis�

detections� According to the Neyman Pearson criterion �	�� 	�� the number of mis�detections

for a given rate of false alarms can be minimized by thresholding the likelihood ratio LH�z��

The threshold is a function of the required rate of false alarms� In place of the likelihood

ratio� any of its monotonic function �such as the logarithm� can be used� Such a function is

called a discriminant function�

To decrease the probabilities of false alarms and mis�detections� one can integrate ob�

servations spatially or temporally� Let the N elements z�� z� � � � zN of z be independent

observations� The likelihood ratio and its logarithm �log likelihood ratio� are given by�

LH�z� �
p�z�� z� � � � zN jH��

p�z�� z� � � � zN jH��
�

NY
i��

p�zijH��

p�zijH��
�����

l�z� � logLH�z� �
NX
i��

�log p�zijH��� log p�zijH��� ���
�

In the case of zi�s having normal distributions in absence and presence of target� such that

their probability density functions are�

p�zijH�� �
	p
����

exp

�
z�i
���

�
� p�zijH�� �

	p
����

exp

�
�zi � ���

���

�
�����

The log likelihood ratio is given by�

l�z� � logLH�z� �
NX
i��

��zi � ��� � z�i
���

�
�

��

�
NX
i��

zi

�
� N��

���
�����

�



This is a monotonic function of
P
zi� Hence� thresholding the sum �or mean� of the obser�

vations yields an optimal detector� Since sum and mean are linear functions� they are also

normally distributed�

Consider a discriminant function which is normally distributed in absence and presence

of target as N���� �
�
�� and N���� �

�
��� respectively with equal variances �

�
� � ��� but unequal

means �� and ��� If this function is thresholded to obtain a particular false alarm rate� it

can be shown that the corresponding mis�detection rate is a function of its Signal to Noise

Ratio �SNR� given by ��� � ������� Hence in this case� the performance in terms of false

alarm and mis�detection rates is determined by the SNR�

If N independent normal observations are made� their sum is distributed as N��� N���

in absence of target� and N�N��N��� in presence of target� Hence� the SNR is given by

N��
p
N�� �

p
N��� � i�e�� ampli�ed by a factor of

p
N � In other words� a signal with

SNR of S�
p
N integrated over N frames could yield the same rate of false alarms and mis�

detections as one would get using a single observation with SNR of S� Hence� the SNR

required for detection reduces by
p
N when N frames are added� The same result is true for

averaging of N frames� since the signal as well as the noise would be reduced by a factor of

N �

��� Pre�processing

Before any other algorithms can be applied� pre�processing should be performed on the input

images to suppress the background� The following approaches were used for pre�processing

the images�

����� Low�stop �lter

In the case of an image with little or no clutter� a low�stop �lter which subtracts from

every pixel� the local average of the neighborhood of that pixel e�ectively suppresses the

background intensity� This �lter can be implemented by convolving the image with a ��D

mask corresponding to the �lter� Since the amount of computation increases with the mask

size� a small sized mask was used in conjunction with the pyramid approach described in

Section ��
 to simulate the e�ect of a large sized mask�

�



����� Morphological �lter

If the background has signi�cant clutter� the low�stop �lter is not as e�ective for removing it�

A morphological �lter ��� can remove large sized features �usually clutter�� while retaining

small sized features �usually targets��

The gray�scale morphological operations of dilation ��� and erosion ��� are de�ned as�

�f �m��x� y� � max
�x��y���m

ff�x� x�� y � y�� �m�x�� y��g ����

�f �m��x� y� � min
�x��y���m

ff�x� x�� y � y���m�x�� y��g �����

where m is the mask using which the morphological operation is performed� and f is the

image which is considered to have a default value of �� outside its domain� Morphological

closing and opening can be de�ned using the above operations as�

�f �m� � �f �m��m � f �����

�f �m� � �f �m��m � f ���	��

A di�erence between the original image and its morphological opening� known as the top�

hat transform outputs small�sized positive targets � i�e�� bright targets in dark background�

On the other hand� the di�erence between the morphological closing and the original image�

known as the bottom�hat transform outputs negative targets � i�e�� dark targets in bright

background� Each of these images are non�negative� and can be separately used to detect

targets�

A single mask for these morphological operations gives undesirable outputs for jagged

boundaries of large features� Hence� horizontal mask mx and vertical mask my were used

separately as proposed by ���� These masks are of length � with origin at the center of the

mask� with all the pixels having the default value of zero� The outputs are given by�

F� � F �maxfF �mx� F �myg ���		�

F� � �F �minfF �mx� F �myg ���	��

��� Spatial integration

To detect targets of a number of di�erent sizes and velocities� and to amplify the SNR� the

target pixels in a given image can be integrated by forming an image pyramid� For this

purpose� the following basic operations are used�





	� Low�pass �lter �LP or LP �� Convolves the image in x and y directions with the masks

mx � my � �	� �� ���� 	���� or their mirror images� The parentheses denote the origins

of the masks�

fLP �x� y� �
X
x�

X
y�

f�x� x�� y � y��mx�x
��my�y

��

fLP �x� y� �
X
x�

X
y�

f�x� x�� y � y��mx�x
��my�y

�� ���	��

�� Down�sampler �DS�� Selects even numbered pixels in the input image to give an image

with half the resolution�

fDS�x� y� � f��x� �y� ���	
�

�� Up�sampler �US�� Forms the output image by putting the input image pixels in even

numbered positions� and zeros in odd numbered positions� The image is scaled by � to

maintain the image intensity during subsequent low�pass �lter step�

fUS�x� y� � �f�x��� y��� when x� y are even� � otherwise ���	��

These steps are combined to form two types of operations�

	� Low�pass down�sample operation �LP 	 DS�� Decreases the resolution of the image

by two� Low�pass �lter prevents aliasing of high frequencies in the image by suppressing

them�

�� Up�sample low�pass operation �US 	 LP �� Increases the resolution of the image by

two� Low�pass �lter smoothes the output of the up�sampler �containing zeros at odd

pixels� to produce the e�ect of interpolation� In this case� the mirror image masks are

used to compensate the asymmetry in the masks�

The above operations can be used to combine pyramid formation with low stop or mor�

phological �ltering by using the system shown in Figure ��	� Images pyr�i� are formed by

successively applying low�pass and down�sample operations on the original image� These

images can be directly used as inputs to the morphological �lter to detect targets at di�er�

ent resolutions� Images pyr��i� are formed by successively applying up�sample and low�pass

operations to the lowest resolution image pyr�n�� where n is the number of pyramid levels�

These operations remove the high frequency components of the original image� Low�stop

�ltered images are given by ls�i� � pyr�i� � pyr��i�� and retain only the higher frequency

components not subtracted out by pyr��i��
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pyr[0] pyr[1] pyr[2] pyr[n]
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Figure ��	� Spatial integration using pyramid construction� LP or LP � low�pass �ltering

with original mask or its mirror image� DS� down�sampling� US� up�sampling� The pyramid

images at stage i � � � � � n are denoted by pyr�i�� Low�stop �ltered images are obtained the

by subtracting the corresponding up�sampled pyramid outputs pyr��i� from pyr�i� and are

denoted by ls�i��

In this way� a hierarchy of images� each with half the resolution of the previous one is

formed� The size as well as the velocity of the object in the image scales as the resolution is

lowered� There is a particular resolution at which the object occupies no more than � to �

pixels in length and width� which would be optimal for detection of the object�

��� Temporal integration

As shown in Section ���� integration of pixels corresponding to a target results in ampli��

cation of the target SNR� and increased reliability of detection� Depending on the image

motion of the target� the following approaches can be used for integration of target pix�

els over a number of image frames� The performance of these approaches is characterized

experimentally and theoretically in Chapters � and 
� respectively�

����� Recursive temporal averaging

In the case of objects on a collision course �	
� the image motion is very small� Hence� pixel

wise temporal averaging of a sequence of images would improve the detection performance�

However� direct use of temporal averaging results in in�nite memory� To give a higher weight

to more recent observations� a recursive �lter can be used� The output F �k� at time k for

�



any pixel is recursively obtained from the input f�k� at the same pixel using the following

steps�

	� Initialization� F ��� � �

�� Recursion� F �k� � f�k� � �F �k � 	�

where � is a forgetting factor between � �full forgetting� and 	 �no forgetting��

����� Dynamic programming

In the case of moving targets� the temporal averaging �lter does not improve the detection�

A dynamic programming algorithm ��� is more e�ective in detection of moving targets� The

algorithm is based on shifting the images before averaging them so as to align the target to

be detected� Since the velocity of the target could be arbitrary� the velocity space �u� v� is

discretized within the range of possible target velocities� A set of intermediate images F �

each corresponding to a particular velocity �u� v�� are created recursively using the following

steps�

	� Initialization� For all pixels �x� y� and all velocities �u� v�� set

F �x� y� u� v� �� � � ���	��

�� Recursion� At time k� set

F �x� y� u� v� k� � f�x� y� k� � � max
�x��y���Q

F �x� u� x�� y � v � y�� u� v� k� 	� ���	�

where

Q � f�x�� y��jx�min � x� � x�max � y
�

min � y� � y�maxg ���	��

�� Termination� At time K� take

Fmax�x� y�K� � max
�u�v��P

F �x� y� u� v�K� ���	��

where

P � f�u� v�jumin � u � umax � vmin � v � vmaxg ������

The maximum operation in the recursion step is performed using the set Q� which ensures

that the targets with velocities which do not fall on the grid are not missed� The set of

discretized velocities denoted by P determines the range of target velocities that can be
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detected by the algorithm� The �nal maximum in the termination step combines the targets

corresponding to all the velocities� The number of elements in P and Q are denoted by p

and q� respectively�

In the recursion step� a maximum is taken over q pixels� If these pixels are all noise

pixels� they are more likely to give a false alarm if q is large� Thus� the rate of false alarms

increases with q� To get better performance� a smallest possible q should be used� The value

of q � 
 has been used in our experiments corresponding to a �� � neighborhood� given by�

Q � f��� ��� ��	� ��� ����	�� ��	��	�g ����	�

This ensures that the targets having fractional velocities are not missed� The asymmetry in

this neighborhood is compensated by choosing umin � umax � 	 and vmin � vmax � 	� For
the case of umax � vmax � 	� p � 
 and P is given by�

P � f��� ��� �	� ��� ��� 	�� �	� 	�g ������

The algorithm then detects targets with a maximum velocity of 	 pixel per frame� However�

when spatial integration is performed prior to dynamic programming� targets with larger

sizes and velocities can be detected�

On the other hand� if P � Q � f��� ��g so that p � q � 	� the algorithm reduces

to recursive temporal averaging� which gives the best performance for stationary targets�

However� the performance of temporal averaging sharply degrades if the target is moving�

whereas that of dynamic programming algorithm does not�

The output of the dynamic programming algorithm is an image� with large values at

positions where the target strength is high� However� the pixels in the neighborhood of the

target will also have a signi�cantly large value� This can be resolved by using non�maximal

suppression� where the output is smoothed using a Gaussian �lter with � � 	��� and each

pixel which is not a local maximum in its ��� region is set to zero� After this� only the pixels
which are local maxima remain� which can be thresholded to obtain the target locations�

It should be noted that separate processing should be performed if the targets are negative

� i�e�� dark targets on a bright background� In the case of low�stop pre�processing� this is

done by using the negative of the pre�processed image� whereas in the case of morphological

pre�processing� both original minus open and closed minus original images are processed

separately�

		



��� Composite system

The above mentioned algorithms have been combined to form a composite system for target

detection� The steps that form this composite system are�

	� Temporal Averaging� This step is performed �rst in the case of objects in a uniform

background� having a very small image motion� such as those on a collision or near�

collision course� In such a case� temporal averaging improves the SNR and reduces the

processing rate required for subsequent steps�

�� Pyramid construction with low�stop or morphological �ltering� In this step� a pyramid

is constructed to accommodate di�erent sizes and velocities of objects� For pre�

processing the images� low�stop or morphological �ltering is performed at each pyramid

level to remove background intensity� Low�stop �ltering is more e�ective in low clutter

situations� whereas morphological �ltering ��� is more e�ective in suppressing back�

ground clutter due to clouds and ground�

�� Dynamic Programming� A dynamic programming algorithm ��� is performed on pre�

processed frames to integrate the signal over a number of frames by taking the target

motion into consideration� Non�maximal suppression and thresholding are then per�

formed on the output�

It should be noted that one or more of these steps can be bypassed so that any of the basic

algorithms described above can be tested individually using the same system�

��� Results using analog camera

The above target detection algorithms were applied to real image sequences obtained from

NASA� Figure ��� �a� shows an image from the sequence with the target aircraft �ying away

from the host aircraft� The sequence can be played in reverse to simulate the aircraft on a

collision course� Since the aircraft on a collision course have a small image motion� temporal

averaging was the optimal detection algorithm in this particular case� The aircraft was at

a distance of approximately 
 nautical miles ��
 km�� and was barely visible in a single

image� Low�stop �lter was applied before temporal averaging to remove the near�uniform

background� After temporally averaging and thresholding� the aircraft was detected as shown

in Figure ��� �b�� Dynamic programming algorithm was performed on a sequence of images
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�a� �b�

Figure ���� Target detection using temporal averaging� �a� Original image with a distant

contracting target at 
 nautical miles� The target is approximately in the middle of the

image� However� due to degradation of image quality� it is very faint� �b� Detection of

the distant contracting target using low�stop �lter pre�processing� temporal averaging and

thresholding� A false alarm in the mid�left area is most likely due to a smudge on the camera�

�after applying low�stop �lter as pre�processing� in which an aircraft was �ying from right to

left across the image as shown in Figure ��� �a�� Dynamic programming algorithm detected

the aircraft with a low rate of false alarms� However� the target was dilated by the use of this

algorithm� Clutter removal using morphological �ltering was also explored� Figure ��
 �a�

shows a small aircraft �ying in the middle�right part of the image� The image was actually

obtained by averaging 	� motion compensated images from an image sequence� in which an

aircraft was �ying on the collision course� Application of morphological �lter removed most

of the clutter due to edges of large�sized features� This aircraft which was on a collision

course� was retained� However� other small�sized features were also retained� resulting in a

number of false alarms� The result is shown in Figure ��
 �b��

Chapter � presents a systematic performance characterization for temporal averaging as

well as dynamic programming using statistical image models for digital cameras� It was

observed that the algorithms performed very well when the background was clear� However�

the performance degraded severely in presence of clutter� In the case of cluttered images�

pre�processing using morphological �lter worked better than that using low�stop �lter� Most

of the clutter was removed� but small sized clutter� especially due to specular re�ection from

water remained� Finally it was observed that the number of false alarms after applying the
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�a� �b�

Figure ���� Target detection using dynamic programming� �a� Original image frame with a

translating target� �b� Location of the detected target using dynamic programming �following

a low�stop pre�processing step��

            

�a� �b�

Figure ��
� Detection using morphological processing� �a� An average of ten motion�

compensated frames of an image sequence� The aircraft is in the middle�right part of the

image� �b� Detection using morphological �lter� False alarms due to other features are also

seen�

	




algorithm� in general� was reduced but still signi�cant�

��	 Data collection using digital camera

The real data that was used for our previous work was captured using an analog camera

and recorded using NTSC video� thus containing additional noise that should not be present

when a digital camera is used on the actual �ight� Hence� the performance of the algorithms

should be characterized without the undue interference from video noise� For this purpose�

a system was designed to capture image sequences from an aircraft using a digital camera�

and record them digitally on a disk� The camera used was 	K� 	K Kodak MegaPlus ES	��

camera with the output at approximately �� frames per second and a gray scale resolution

of � bits� Hence� a bandwidth of �� MBytes per second and a storage of 	�� GBytes per

hour of recording is required�

To capture the video image sequences with these large bandwidth and storage require�

ments� as well as perform the image processing operations in real time� a real�time image

processing system with pipelined image processor called DataCube MaxPCI was procured�

This system is a cost�e�ective way to meet high�throughput low�latency demands and has

become popular among researchers working on real�time vision problems� The New Technol�

ogy Disk �NTD� available with the DataCube MaxPCI has the required ability to perform

high�speed digital image recording� NTD is a Redundant Array of Inexpensive Disks �RAID�

that enables high�speed lossless digital image recording and playback� The image data can

be recorded and played back at a real�time frame rate �overall 
� MBytes�sec��

Image data has been obtained from �ight tests conducted at NASA Langley Research

Center� A sample image captured using this system is shown in Figure ���� Work on

implementing the detection algorithms on the DataCube hardware using these images is

described in �		�� Detection of objects crossing the aircraft �instead of those on a collision

course� was performed on the DataCube system in real time� The algorithms used for this

purpose are described in Chapter �
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Figure ���� An image captured from an aircraft using the digital recording system� The

target aircraft is in the middle�right part of the image�
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Chapter �

Performance Characterization of

Detection Algorithms

The most common tool used to characterize the performance of a detection algorithm is a

plot of its probability of mis�detection versus its probability of false alarm� as some tuning

parameter is changed� This plot is commonly known as the �receiver operating curve� of the

system� or ROC� for short� Although ROCs are useful to represent the system performance

as a parameter is varied� they have several limitations� One disadvantage in using ROCs

is due to the fact that only one parameter can be varied at a time� Thus� if the e�ect of

variations of multiple variables needs to be studied� a di�erent curve must be determined

for each of these variables making the analysis of the system performance more di�cult� A

second disadvantage is that it is di�cult to compare ROCs for di�erent algorithms since they

may take di�erent variables into account� Finally� obtaining ROCs is an expensive process

where factorial experiments must be carried out to determine the system performance at all

performance levels with the probability of false alarms ranging from zero to one�

In Kanungo et al� �	��� a methodology which was adapted from the psychology literature�

and is discussed next� was proposed as an alternative characterization tool to summarize mul�

tiple ROCs into a single curve� solving the problems described above� This chapter describes

how to use this methodology to characterize the performances of the algorithms described

in Chapter �� The performance of the dynamic programming algorithm is compared against

that of temporal averaging� and thresholding of a single image frame�
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Figure ��	� Steps for performance characterization� �a� Step 	� Obtain the frequency dis�

tributions of the evidence measure for images with and without target� �b� Step �� Obtain

the ROC� �c� Step �� Determine the optimal operating point using either the expected cost

or the probability of detection given the probability of false alarm� �d� Step 
� Plot the

threshold value corresponding to the optimal operating point versus a variable of interest�

��� Performance characterization methodology

For the sake of completeness� the methodology for performance characterization proposed

in �	�� is described here� Consider a detection algorithm that must report whether a given

image has a target or not� Typically� the algorithm would compute some measure of evidence

of target presence and compare it to some given threshold value� Whenever the evidence

measure is greater than the given threshold� a target would be reported� The performance

of the algorithm is a�ected by several factors� such as image contrast� target size� complexity

of the background� etc� The e�ect of variations of these variables on the overall performance

can be measured through the use of equivalent e�ects of some critical signal variable by

following the four steps described below�

	� Obtain evidence distributions� The �rst step consists on estimating distributions of

evidence measures� one for images with target and another for images without target�
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as illustrated in Figure ��	 �a�� This estimation is done non�parametrically by randomly

presenting the algorithm with images of both types and recording the frequency of the

evidence measure values reported by the algorithm� using a histogram� It should be

noted that the frequency distributions are used here only for estimating the false alarm

and mis�detection rates� The evidence measure which is thresholded may or may not

be derived from these distributions according to Bayes� rule� Hence� the performance

of optimal as well as non�optimal detectors can be characterized by this approach�

�� Obtain ROCs� The second step consists on constructing an ROC as the one shown in

Figure ��	 �b� by varying the threshold used by the algorithm to compare against the

computed evidence measure� False alarms occur when a pixel in the given image does

not contain a target� but the evidence measure is greater than the threshold being

used� Mis�detections occur when the given image contains a target� but the evidence

measure is less than the threshold� The probabilities of false alarms and mis�detections

can be approximated by their frequency ratios�

P �FA� � P �H�jH�� �
Number of false alarms

Total number of input pixels without target

P �MD� � P �H�jH�� �
Number of mis�detections

Total number of targets in input images

where H� and H� denote the hypotheses corresponding to the absence and presence of

a target� respectively�

�� Determining the optimal operating point� The optimal operating point �or its corre�

sponding threshold value� can be speci�ed in di�erent ways� depending on how much

prior knowledge is available� If the prior probabilities and costs are known� the optimal

operating point can be de�ned as the one minimizing the expected cost� Let C��� C���

C��� and C��� be the costs of a false alarm� a mis�detection� a correct detection� and a

correct rejection� respectively� The expected cost is then given by�

E�C� � �P �H�jH��C�� � P �H�jH��C���P �H��

� �P �H�jH��C�� � P �H�jH��C���P �H�� �����

The optimal operating point is found by minimizingE�C� with respect to the threshold

to be used by the algorithm� In the most likely case when the costs are di�cult to set�

an alternative way to de�ne the required operating point is to use the Neyman�Pearson

criterion � i�e�� to maximize the probability of detection for a given probability of false

alarm�
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Independently of which de�nition is used� the optimal operating point depends on the

signal to noise ratio �SNR� in the input image� For example� increasing the target

contrast results in an increase of the SNR and� hopefully� in an improvement of the

algorithm performance for a given threshold value� The optimal operating points for

di�erent SNRs can be found by repeating steps 	 and � for the corresponding SNR

values and determining the optimal point for each of the resulting ROCs� Once this

is done� a graph of the expected cost or the probability of detection versus SNR can

be plotted� depending on which de�nition of operating point is being used� This is

illustrated in Figure ��	�c�� Finally� let SNRT and T be the SNR and the associated

threshold values for the optimal operating point for a given level of performance� as

shown in the �gure� The level of performance is speci�ed by either a desired expected

cost of classi�cation or a desired probability of mis�detection� again� depending on

which optimal criterion is used�


� Performance analysis with respect to variables of interest� Besides SNR� other factors

a�ect the algorithm performance and merit study� Examples are the size of the target�

the amount of target motion on the images� and the amount and nature of image

clutter� In order to study these e�ects� steps 	 to � are repeated for di�erent values of

variables representing these variations� These results are then summarized in a graph

where the threshold T determined in step � is plotted against the value of the variable

of interest� as shown in Figure ��	�d�� A fairly �at plot indicates that the e�ect of the

variable being considered on the optimal operating point of the algorithm is negligible�

On the other hand� a steep plot indicates that the variable has a high impact on the

performance�

It should be noted that a smaller SNR threshold T implies better performance� since

weaker targets can be detected with the same given rates of false alarms and mis�detections�

Measuring the performance in terms of the SNR threshold makes it easier to measure and

compare the performance of di�erent algorithms� or the same algorithm with di�erent pa�

rameters� This is because the variables� such as the false alarm and mis�detection rates are

eliminated from the curves� making place for other parameters�
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��� Experimental protocol

In this section� the experimental protocol used to characterize the performance of the target

detection algorithms� is described in detail� The protocol consists of the following compo�

nents� specifying how to

	� Generate images of simulated targets�

�� Apply the detection algorithm�

�� Estimate the rates of false alarms and mis�detections �ROCs� for di�erent sets of

parameters� and


� Characterize the algorithm performance by condensing the ROCs into a performance

curve�

����� Image generation

In order to characterize the performance of the detection algorithm� it is applied to sequences

of synthetic images with and without targets� While the images with targets are used to

estimate the mis�detection rate� the images without targets are used to estimate the false

alarm rate� The images can have the following di�erent types of backgrounds�

	� Synthetic noise from camera model� The background is assumed to have a constant

value Abg� The noise is arti�cially simulated� using the camera noise model�

�� Real noise from a digital camera� The background images are taken from a sequence

of images obtained from a digital camera looking at a scene with constant intensity

such as clear sky� or white paper�

�� Real background an from analog camera� The background images are obtained using

a sequence of images with signi�cant clutter� The sequence� which was provided by

NASA� was captured using an analog camera mounted on a �ying aircraft� Figure ���

shows a typical frame of this sequence�

Generation of image sequences

To estimate the number of false alarms� the background images themselves� without any

addition of targets are used directly� The size of these images is Nx �Ny� For estimation of

�	



            

Figure ���� A sample image from the real background sequence provided by NASA� The

image sequence was taken from an analog camera mounted on an aircraft�

the rate of mis�detections� simulated targets are inserted in the background images generated

as described below� For each simulation� a target �le is created having information on the

position� velocity� size� amplitude and each target to be placed in an image� The image size

is taken as Nx � Ny� The number of targets to be inserted in every image is Ntarg� The

target trajectories are generated in such a way that the detection of one target does not

interfere with the detection of another� This is accomplished by drawing a window around

each target trajectory� The next generated trajectory is valid only if the window around

it does not overlap with the windows around the previously generated targets� Otherwise�

the procedure is repeated by generating another trajectory� until the total number of valid

trajectories is Ntarg�

The velocity �Vx� Vy� of the targets is uniformly distributed so that �umax � Vx � umax

and �vmax � Vy � vmax� The position of the targets is speci�ed for the last frame � i�e�

when the detection is completed� The position of the target in other frames is given by

�x � Vx�t� y � Vy�t�� where �t is the time�interval between the given frame and the last

frame�

A target can be a point target� or have a speci�ed height and width� The size of the target

is given by sx � sy� The target amplitude is given by A� For point targets� the amplitude

corresponds to the contrast of the pixel it occupies� with respect to the background� However�

for an extended target� the contrasts of all the occupied pixels are given by the product of

the target amplitude and the fraction of the area in the respective pixel that is covered by

��



the target�

Figure ��� �a� shows the trajectories of simulated targets to be added to an image� and

Figure ��� �b� shows a zoomed part on a portion of the image� The end of the trajectories

are marked by blobs� The black box around the target denotes the region where another

target cannot be present� to reduce the interference between the targets�

Once the �le describing the targets is created� an image sequence of Nframe frames is

generated� For each frame� the position of the targets are calculated� and the targets are in�

serted accordingly� For point targets� the amplitude is added to the background image in the

target position pixel� For extended targets occupying a number of pixels �fully or partially��

the product of the amplitude and the fractional occupancy is added to the background image

at that pixel�

Addition of noise

Two types of camera noise ��� 		�� the Fixed Pattern Noise �FPN� and the temporal noise

are added to the sequences created using synthetic backgrounds� FPN has two components�

additive and multiplicative� The parameters of this noise change from pixel to pixel� but do

not change with time� The parameter values for each pixel are determined a priori using the

camera� and stored as images� On the other hand� the temporal noise is completely random�

and is generated separately for each frame� The temporal noise approximately follows a

Gaussian distribution with a variance of�

��noise � w� � w�I

where I is the expected gray value of the pixel� and w�� w� are the parameters of the particular

camera� However� since the background amplitude Abg is constant for the experiments with

simulated noise� and the target amplitude A
 Abg� we have I � A � Abg � Abg and �
�
noise

is approximately constant� given by�

��noise � w� � w�Abg

Hence� the noise can be approximated as Gaussian noise with a constant standard deviation

of �noise� The values of the parameters for the particular camera were estimated �		� as

w� � ��		 and w� � ������� For background A � 	��� this gives �noise � ���
�� The image

is quantized to give the output in byte format�
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�e� �f�

Figure ���� Detection using dynamic programming� �a� Simulated targets trajectories� There

are ��� targets� and the image size is ��� � ���� The end of the trajectory is marked by
a blob� The targets are separated so that there the interference between them is reduced�

The black box around the target denotes the region where another target cannot be present�

�b� A zoomed part of the target trajectory image� �c� The dynamic programming output

of a typical experiment �before non�maximal suppression�� �d� Zoomed part of the output�

�e� The dynamic programming output of the same experiment without adding targets � i�e��

false alarms� �f� Zoomed part of the output�
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����� Algorithm application

The target detection algorithm whose performance is to be characterized is applied to each

simulated image sequence� In the cases of synthetic images� and digital camera sequences�

�xed pattern noise �FPN� can be corrected in advance by using pre�computed parameters

of FPN for each pixel� However� these parameters are perturbed by a random amount

corresponding to their estimated covariance� to model the error in estimating these val�

ues� Experiments are performed without and with correction of FPN� and the results are

compared�

According to the type of background used� preprocessing in the form of a low�stop �lter or

a morphological �lter are performed before applying dynamic programming� After dynamic

programming is applied� non�maximal suppression is performed to ensure correct counting of

false alarms and mis�detections� The output �before non�maximal suppression� of a typical

experiment with ��� targets is shown in Figure ��� �c� and �d� where the latter shows a

zoomed part of the output�

����� Estimation of false alarms �FA� and mis�detections �MD�

The algorithm to be characterized is applied on the image sequences with as well as without

targets� The sequences without targets are used to estimate the false alarm rate� whereas

the sequences with targets are used to estimate the mis�detection rate�

For the false alarm rate� the histogram of the output image is obtained� Using this

histogram� the false alarm rates for di�erent thresholds can be obtained� For the mis�

detection rate� only the pixels in a speci�ed window of � � � pixels around the speci�ed
target position are checked� For each such window corresponding to a single target� the

maximum value of the algorithm output is taken� A histogram of these maximum values is

formed� and processed to obtain the mis�detection rates for di�erent thresholds� The false

alarm and mis�detection rates are averaged over a number of simulations NFA and NMD�

respectively�

The number of simulations to test can be speci�ed so that the standard deviation in the

estimate of the false alarm or mis�detection rate is below a given value� This can be seen

by observing that the occurrence of an event such as a false alarm or a mis�detection can

be modeled as a Poisson process and therefore the variance of the total number of events is

equal to the mean� Thus� if n events are observed� the standard deviation of the absolute

error in the number of events is
p
n� and that of the relative error is 	�

p
n� For example� for

��



n � 	� events� the error � is ���� or ��  of the number of events� This error estimate can

be con�rmed by measuring the variance of these rates across the simulations�

����	 Performance characterization

Using the estimated false alarm and mis�detection rates� the receiver operating curve �ROC�

can be plotted showing the rate of mis�detection against the rate of false alarms� The mis�

detection rate for a speci�ed false alarm rate �FAT � is noted from the curve� The simulations

are repeated for a number of signal amplitudes A� The ratio of this amplitude to noise level

corresponds to the SNR� The value of the signal amplitude for a speci�ed mis�detection rate

�MDT �� and the above false alarm rate is obtained� This is considered as the threshold signal

value �AT �� The number of simulations used is at least NFA � 	��FAT in the case of false

alarms and NMD � 	��MDT in the case of mis�detections� so that for the rates FAT and

MDT � an average of at least 	� events would be observed� giving an error � of at most ��

 � Due to constraints on the execution time� larger number of experiments were not used�

although they would be desirable for reducing this error�

Other parameters� such as the size of the target� can be varied one at a time� and the

variation of AT can be plotted against the respective parameter to determine the e�ect of

the parameter on the algorithm performance�

��� Results

The target detection algorithm was tested on � categories of images as described in the

protocol� The results are shown and compared in the following sections�

����� Synthetic noise from camera model

In this case� the noise was synthetically generated using the noise model of the Kodak

Megaplus ES 	�� digital camera� Targets of varying size were added for mis�detection anal�

ysis� Experiments without and with correction of FPN were performed�

Figure ��
 �a� and �b� show the plots of the false alarm and mis�detection rates� re�

spectively� against the threshold value� for experiments without FPN correction� The mis�

detection rates are shown for a number of signal amplitudes for 	 � 	 targets� The mis�
detection rate is measured as the ratio of the average number of mis�detections� to the total

number of targets in a simulation� However� the false alarm rate is measured as the average

��



Table ��	� Table of parameters used for the experiments with the following image categories�

�	� Synthetic noise from camera model� ��� Real noise from a digital camera� ��� Real

background from an analog camera�

Description Parameter Category

�	� ��� ���

Image x size Nx ��� ��� �
�

Image y size Ny ��� ��� 
��

No� of targets Ntarg ��� ��� ��

Maximum x velocity umax 	 	 	

Maximum y velocity vmax 	 	 	

x size sx ��� to � � �

y size sy ��� to � � �

Amplitude A 	�� to 	��� 	�� to ��� 	��� to ���

Number of frames Nframe �� �� ��

Background value Abg 	�� � ��� not used

Noise standard deviation �noise ���
� not used not used

Forgetting factor � 	��	� 	��	� 	��	�

Number of FA simulations NFA ��� 	 	

Number of MD simulations NMD �� 	� 	�

Threshold FA rate FAT ���� 	� 	�

Threshold MD rate MDT ����	 ���	 ���	

�



number of false alarms per simulation� instead of the ratio of the number of false alarms to

the total number of pixels� This is done to give a better idea of the algorithm performance�

Figure ��
 �c� shows the plot of mis�detection rate against false alarm rate for di�erent

amplitude values for 	�	 targets� The point of threshold false alarm rate FAT is set to ����

false alarms per simulation� which corresponds to a total of 	� false alarms for NFA � ���

simulations� Figure ��
 �d� shows the plot of mis�detection rate against the amplitude values

for the above rate of false alarms� The AT for the threshold mis�detection rate of MDT is

interpolated� and marked as a circle� The MDT is set to a probability of ����	 per target�

which corresponds to an average of ��� mis�detections per simulation for a simulation with ���

targets� or a total of 	� mis�detections for NMD � �� simulations� The corresponding graphs

for the case where �xed pattern noise compensation was applied are shown in Figure ����

The above experiments are repeated for other sizes of targets� and the AT calculated from

these is plotted against the size of the target� Resulting plots for the experiments without

FPN correction are shown in Figure ��� �a� for square targets �size x�x� and in Figure ��� �b�
for rectangular targets �size 	�x�� The corresponding results for the experiments with FPN

correction are shown in Figure ��� �c� and �d�� The threshold amplitudes for various sizes

are tabulated in Table ���� It is seen that larger targets require smaller signal amplitudes

for detection implying better performance� Similarly� the signal amplitudes required when

FPN correction is applied are much smaller than those when the correction is not applied�

implying better performance in the former case�

Table ���� Results of dynamic programming algorithm on simulated image sequences without

and with FPN correction� Threshold amplitudes are shown for false alarm rate of ���� per

simulation and mis�detection rate of ����	 per target�

Size No FPN correction With FPN correction

	� 	 	
��� 
��

	� 	�� 		�
� ��
�

	� � ���� ��	�

	��� 	�� 	��
� ����

�� � ���� ���
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Figure ��
� Results for camera noise model without FPN correction� �a� Plot of FA rate

�average number per simulation� against threshold �b� Plot of MD rate against threshold�

for a number of signal amplitudes �higher amplitudes towards right� for 	�	 targets� �c� Plot
of MD rate against FA rate �for marked amplitude�� The data points are marked as crosses�

The MD rate when FA rate is FAT � ���� per simulation is interpolated� and plotted as

circle� �d� Plot of MD rate against amplitude for FA rate of FAT � ���� per simulation�

The value amplitude when MD rate is MDT � ����	 per target is interpolated and marked

as a circle�
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Figure ���� Results for camera noise model with FPN correction� �a� Plot of FA rate �average

number per simulation� against threshold �b� Plot of MD rate against threshold� for a number

of signal amplitudes �higher amplitudes towards right� for 	� 	 targets� �c� Plot of MD rate
against FA rate �for marked amplitude�� The data points are marked as crosses� The MD

rate when FA rate is FAT � ���� per simulation is interpolated� and plotted as circle�

�d� Plot of MD rate against amplitude for FA rate of FAT � ���� per simulation� The value

amplitude when MD rate is MDT � ����	 per target is interpolated and marked as a circle�
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Figure ���� Performance curves for simulated targets� �a� Plot of amplitude against the

target size �x� x� for experiments without FPN correction� The data points are marked as

crosses� �b� Plot of amplitude against the target size �	 � x�� �c� and �d� Corresponding

plots for experiments with FPN correction�
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����� Real noise from a digital camera

In this case� instead of synthetically generating the noise� background images captured using

the Kodak Megaplus ES 	�� digital camera looking at the sky were used� Targets of size

� � � pixels were synthetically added for the mis�detection analysis� Experiments without
and with correction of FPN were also performed�

The false alarm threshold was set FAT � 	� per simulation� resulting in a total of 	�

false alarms for NFA � 	 simulation� The mis�detection threshold was set to MDT � ���	

per target� corresponding to �� mis�detections for NMD � 	� simulations with Ntarg � ���

targets� Unfortunately� the performance at lower rates of false alarms and mis�detections

could not be reliably estimated because of the limited number of background images available�

However� one can extrapolate the false alarm and mis�detection rates to study the behavior of

the algorithm for lower rates� Due to the normal distribution of noise� even a small increase

in the threshold reduces the false alarm and mis�detection rates dramatically� Hence� a

somewhat higher target amplitude can be expected to reduce these rates to an acceptable

level�

In the case of the experiments without FPN correction� the plot of mis�detection rate

against false alarm rate for di�erent levels of target amplitude is shown in Figure �� �a��

The plot of mis�detection rate against SNR for false alarm rate of FAT � 	� per simulation

is shown in Figure �� �b�� The corresponding plots for the experiments with FPN correction

are shown in Figure �� �c� and �d�� The target strength required for detection at the speci�ed

rates of false alarms and mis�detections are marked by circles in Figures �� �b� and �d��

It can be seen that the target strength required when FPN is not corrected �AT � �����

is higher than that required when FPN correction is applied �AT � 	����� implying better

performance in the latter case�

����� Real background an from analog camera

In this case� a real aerial background� obtained from an analog camera used during a �ight

test was employed� Targets of size � � � pixels were synthetically added for mis�detection
analysis�

In order to suppress the background� low�stop and morphological pre�processing were

separately applied� and the results compared� Since the background was cluttered� a much

higher signal was required for satisfactory detection� Even then� the false alarm rate does not

reduce su�ciently� thus showing that more post�processing would be required after applying
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Figure ��� Results for real noise from camera for �� � targets� �a� Plot of MD rate against
FA rate �for marked amplitude� for images without FPN correction� The data points are

marked as crosses� The MD rate when FA rate is FAT � 	� per simulation is interpolated�

and plotted as circle� �b� Plot of MD rate against amplitude for FA rate of FAT � 	�

per simulation� The data points are marked as crosses� The value of AT where MD rate is

MDT � ���	 per target is interpolated and marked as a circle� �c� and �d� Corresponding

plots for FPN corrected images�
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the algorithm� However� since the number of false alarms �plus true candidates� would be

small after this processing� the time complexity of subsequent algorithms would be reduced

signi�cantly� The techniques described in Chapter � can be used to separate the remaining

background clutter from the genuine targets� These techniques utilize the di�erence in the

image translation and expansion between an object on a collision course� and the background

clutter�

The false alarm threshold was set FAT � 	� per simulation resulting in a total of 	� false

alarms for NFA � 	 simulation� The mis�detection threshold was MDT � ���	 per target�

corresponding to 	� mis�detections forNMD � �� simulations withNtarg � �� targets� Again�

unfortunately� lower rates for false alarm and mis�detection cannot be reliably estimated due

to the limited number of background images available�

The results for the morphological �lter and the low�stop �lter are shown in Figures ��� and ����

respectively� It can be seen that the target strength required when the morphological �lter

�AT � 	��� is used is much lower than that required when the low�stop �lter �AT � ����

is used� The morphological �lter is thus better� and the reason for this is that the morpho�

logical �lter reduces clutter corresponding to large features� whereas the low�stop �lter does

not do this e�ectively� However� both result in much poorer performance than that obtained

with a digital camera with clear background�

����	 Comparison with other methods

The performance of the dynamic programming algorithm was also compared with other

methods such as simple thresholding on a single frame� and temporal averaging on the

same number of frames� The comparison was made using FPN correction on images with

simulated camera noise� The results of applying the dynamic programming algorithm� simple

thresholding on a single frame� and temporal averaging on image sequences with � � �
moving targets are shown in are shown in Figures ��	�� ��		 and ��	� respectively� Temporal

averaging was also applied on image sequences with stationary targets instead of moving

targets� the results of which are shown in Figure ��	��

Similar experiments were performed with other target sizes� Table ��� shows the compar�

ison the for these algorithms using various target sizes� The plots of the threshold amplitudes

against target sizes are shown in Figure ��	
� Again� smaller threshold amplitudes imply

better performance as explained before�

It can be seen that the performance of single frame thresholding� as well as temporal

�
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Figure ���� Results for real cluttered background for �� � targets using morphological �lter
in the preprocessing� �a� Plot of FA rate �average number per simulation� against threshold

�b� Plot of MD rate against threshold� for a number of signal amplitudes �higher amplitudes

towards right�� �c� Plot of MD rate against FA rate �for marked amplitude�� The data

points are marked as crosses� The MD rate when FA rate is FAT � 	� per simulation is

interpolated� and plotted as circle� �d� Plot of MD rate against amplitude for FA rate of

FAT � 	� per simulation� The data points are marked as crosses� The value of AT where

MD rate is MDT � ���	 per target is interpolated and marked as a circle�

��



0 10 20 30 40 50 60 70
10

0

10
1

10
2

10
3

10
4

10
5

10
6

False Alarm Rate

Thr

F
A

0 10 20 30 40 50 60 70 80
10

−2

10
−1

10
0

10
1

10
2

50 55 60 70

size: 2x2,lstop

Thr

M
D

�a� �b�

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

   50   55   60   70

size: 2x2,lstop

FA

M
D

50 52 54 56 58 60
10

−1

10
0

10
1

10
2

size: 2x2,lstop

Amplitude

M
D

 @
 F

A
=

10

�c� �d�

Figure ���� Results for real cluttered background for � � � targets using low stop �lter in
the preprocessing� �a� Plot of FA rate �average number per simulation� against threshold

�b� Plot of MD rate against threshold� for a number of signal amplitudes �higher amplitudes

towards right�� �c� Plot of MD rate against FA rate �for marked amplitude�� The data

points are marked as crosses� The MD rate when FA rate is FAT � 	� per simulation is

interpolated� and plotted as circle� �d� Plot of MD rate against amplitude for FA rate of

FAT � 	� per simulation� The data points are marked as crosses� The value of AT where

MD rate is MDT � ���	 per target is interpolated and marked as a circle�
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averaging are much poorer than that of the dynamic programming� However� if stationary

targets are used instead of moving targets� the performance of temporal averaging is slightly

better than that of dynamic programming� showing that temporal averaging is the best

choice when the targets are stationary�

Table ���� Results of target detection algorithms on simulated image sequences with FPN

correction� Threshold amplitudes are shown for false alarm rate of ���� per simulation and

mis�detection rate of ����	 per target�

Size Dynamic Single frame Temp� Avg� Temp� Avg�

prog� thresh� �moving� �stat��

	� 	 
�� ����� ����� 
���

	��� 	�� ���� 	���� 	���� ��		

�� � ���
 ��	 		�� 	���
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Figure ��	�� Results for camera noise model with FPN correction for �� � targets using dy�
namic programming� �a� Plot of FA rate �average number per simulation� against threshold

�b� Plot of MD rate against threshold� for a number of signal amplitudes �higher amplitudes

towards right�� �c� Plot of MD rate against FA rate �for marked amplitude�� The data

points are marked as crosses� The MD rate when FA rate is FAT � ���� per simulation is

interpolated� and plotted as circle� �d� Plot of MD rate against amplitude for FA rate of

FAT � ���� per simulation� The value of AT when MD rate is MDT � ����	 per target is

interpolated and marked as a circle�
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Figure ��		� Results for camera noise model with FPN correction for � � � targets by
thresholding a single frame� �a� Plot of FA rate �average number per simulation� against

threshold �b� Plot of MD rate against threshold� for a number of signal amplitudes �higher

amplitudes towards right�� �c� Plot of MD rate against FA rate �for marked amplitude�� The

data points are marked as crosses� The MD rate when FA rate is FAT � ���� per simulation

is interpolated� and plotted as circle� �d� Plot of MD rate against amplitude for FA rate of

FAT � ���� per simulation� The value of AT when MD rate is MDT � ����	 per target is

interpolated and marked as a circle�
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Figure ��	�� Results for camera noise model with FPN correction for � � � moving targets

using temporal averaging� �a� Plot of FA rate �average number per simulation� against

threshold �b� Plot of MD rate against threshold� for a number of signal amplitudes �higher

amplitudes towards right�� �c� Plot of MD rate against FA rate �for marked amplitude�� The

data points are marked as crosses� The MD rate when FA rate is FAT � ���� per simulation

is interpolated� and plotted as circle� �d� Plot of MD rate against amplitude for FA rate of

FAT � ���� per simulation� The value of AT when MD rate is MDT � ����	 per target is

interpolated and marked as a circle�
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Figure ��	�� Results for camera noise model with FPN correction for ��� stationary targets
using temporal averaging� �a� Plot of FA rate �average number per simulation� against

threshold �b� Plot of MD rate against threshold� for a number of signal amplitudes �higher

amplitudes towards right�� �c� Plot of MD rate against FA rate �for marked amplitude�� The

data points are marked as crosses� The MD rate when FA rate is FAT � ���� per simulation

is interpolated� and plotted as circle� �d� Plot of MD rate against amplitude for FA rate of

FAT � ���� per simulation� The value of AT when MD rate is MDT � ����	 per target is

interpolated and marked as a circle�
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Figure ��	
� Performance comparison of several algorithms� Plot of amplitude against the

target size �x�x� for experiments without FPN correction using �a� Dynamic programming�
�b� Thresholding single frame� �c� Temporal averaging �moving targets�� �d� Temporal av�

eraging �stationary targets��
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Chapter �

Theoretical Performance of Detection

Algorithms

In this chapter� the approximate theoretical performance of the algorithms presented in

Chapter � are derived� The theoretical derivations are based on the paper by Tonissen

and Evans �	��� The theoretical performance is compared with the experimentally observed

performance described in Chapter �� E�ects of approximations used in the derivations are

also described�

��� Dynamic programming algorithm

The dynamic programming algorithm described in Chapter � can be summarized as follows�

	� Initialization� For all pixels �x� y� and all velocities �u� v�� set

F �x� y� u� v� �� � �

�� Recursion� At time k� set

F �x� y� u� v� k� � �	� ��f�x� y� k� � � max
�x��y���Q

F �x� u� x�� y � v � y�� u� v� k� 	�

�� Termination� At time K� take

Fmax�x� y�K� � max
�u�v��P

F �x� y� u� v�K�


�



The number of elements in sets P and Q are denoted by p and q� respectively� The values

of p � q � 
 have been used in our implementation� with u� v � f�	� �g and x�� y� � f�� 	g�
Note that for theoretical analysis� the recursion step is replaced by�

F �x� y� u� v� k� � f�x� y� k� � � max
�x��y���Q

F �x� u� x�� y � v � y�� u� v� k � 	� �
�	�

However� this only changes F by a scale factor� and since both signal as well as noise would

be scaled equally� SNR analysis does not change�

��� False alarm and mis�detection probabilities

Probability of false alarms PFA is the probability that there is at least one state exceeding

the threshold VT out of p velocity states at the �nal output time K� for the pixel where there

is no signal in its neighborhood � i�e�� hypothesis H��

PFA�x� y� � Pr

�
max
�u�v��P

F �x� y� u� v�K� � VT jH�

�
� 	� �P��K�VT ��

p �
���

where P��K�VT � denotes the probability of F for hypothesis H� at time K� being less than

or equal to the threshold VT �

Probability of mis�detection PMD is the probability that there is no output with correct

velocity �u� v� exceeding the threshold at time K� within a neighborhood R of size r � 	�

where one cell contains signal � i�e�� hypothesis H� � and the other r cells are noise� This

allows for some tolerance in the location of target� For example� a � � � neighborhood
corresponding to r � 	 � �� gives a tolerance of � pixels in the location of the target� On
the other hand� a 	 � 	 neighborhood consisting of only the target position corresponds to
r � 	 � 	 or r � � giving no tolerance for the target position�

PMD�x� y� u� v� � Pr
�
max
x��y��R

F �x� x�� y � y�� u� v�K� � VT jH�

�
� P��K�VT ��P��K�VT ��

r �
���

where P��K�VT � denotes the probability of F for hypothesis H� at time K being less than or

equal to the threshold VT �

��� Normal approximations

For an analytic solution of the performance of the dynamic programming algorithm� the

distributions of the intermediate outputs can be approximated using normal approximations�







Table 
�	� Values of �q and �
�
q for a number of values of q�

q �q ��q

	 � 	


 	���� ��
�	

� 	�
�� ����


�� 	���� ������


� ���
	 ���	��

Consider q independent standard normal variableswi � N��� 	�� The cumulative distribution

function �CDF� of the maximum of these variables is given by�

P �w� � Pr
�
max
i

wi � w
�
�
Y
i

Pr�wi � w� � �!�w��q �
�
�

where !��� is the CDF of a standard normal variable� The probability density function
�PDF� is the derivative of the CDF given by�

p�w� � q�!�w��q��G�w� �
���

where G��� is the standard normal PDF�
This distribution of maximum of q standard normal variables can be approximated as

a normal distribution N��q� �
�
q�� where �q and �

�
q denote the mean and the variance of the

actual distribution� These are computed using numerical integration� and are tabulated in

Table 
�	 for di�erent values of q�

For general normal variables zi � N��� ���� one can substitute� zi � � � �wi where wi

are standard normal variables� The maximum of zi is approximately normally distributed

with mean and variance given by�

E�max zi� � �� �E�maxwi� � �� ��q

V �max zi� � ��V �maxwi� � ����q �
���

Let the input at any time k be normally distributed� both in absence and presence of the

target� so that�

f�x� y� kjH�� � N��n� �
�
n� � f�x� y� kjH�� � N��s� �

�
s� �
��


�



Then� the distributions of the output F at time k will also be approximately normally dis�

tributed so that

F �x� y� u� v� kjH�� � N�M��k� S
�
��k� � F �x� y� u� v� kjH�� � N�M��k� S

�
��k� �
���

where the M and S parameters are calculated below�

��� False alarm analysis

For noise pixels� we have�

F �x� y� u� v� �� � �

F �x� y� u� v� k� � f�x� y� k� � � max
�x��y���Q

F �x� u� x�� y � v � y�� u� v� k � 	�
� N�M��k� S

�
��k� �
���

Using equation �
���� the mean and variance parameters at time k can be recursively ex�

pressed as�

M��� � � � M��k � �n � ��M��k�� � �qS��k���

S�
��� � � � S

�
��k � ��n � ����qS

�
��k��

�
�	��

Solving these recursive equations yields expressions for mean and variance at time K�

S�
��K � ��n

	� ��K��Kq
	� ����q

M��K �
	� �K

	� �
�n � ��q

K��X
i��

��iS��K�i���

�
�		�

To get approximate closed�form expressions for M��K � one can write S��k as�

S��k � �n

vuut	� ��K��Kq
	� ����q

� �nq
	� ����q

�
	� �k�

�k��kq
�

�
�	��

where �k is dependent on k but always lies between � and 	� Using �k � 	�� is equivalent

to using the �rst order term of binomial expansion� whereas �k � � corresponds to assuming


�



that S��k remains approximately constant with k� which is justi�able� since �
�
q is quite small�

Accordingly� we have�

M��K �
	� �K

	� �
�n � ��q

K��X
k��

��kS��K�k���

�
	� �K

	� �
�n �

��q�nq
	� ����q

�
	� �K

	� �
� ��K��	� ����q�K

	� ���q

�
�
�	��

where � is a function of all �k and also lies between � and 	� Values of � � � and � � 	�� can

be used as the zero order and �rst order approximations� respectively� For K 	�� � �� 	
such that �K 
 	 �also� ��Kq 
 	�� we have�

S�
��K �

��n
	� ����q

M��K �
	

	� �

�
��n � ��q�nq

	� ����q

�
	 �
�	
�

For the case when � � 	� the sum
PK

i�� �
i changes from �	� �K���	� �� to K� Hence� the

expressions become�

S�
��K � ��n

	� ��Kq
	� ��q

M��K � K�n �
�q�nq
	� ��q

�
K � �

	� ���q�K
	� ��q

�
�
�	��

Finally� the probability of false alarms is�

PFA � 	� �P��K�VT ��
p �
�	��

giving

P��K�VT � � �	� PFA�
��p � !



VT �M��K

S��K

�
�
�	�

where !��� denotes the CDF of a standard normal variable� Hence� the threshold VT can be
expressed in terms of the mean M��K � variance S��K� and the false alarm probability PFA as�

VT �M��K � S��K!
����	� PFA�

��p� �M��K � S��K���p �
�	��

where

���p � !
����	� PFA�

��p� � !�� �	� PFA�p� �
�	��






��� Missed detection analysis

The probability of mis�detection is given by�

PMD � P��K�VT ��P��K�VT ��
r � P��K�VT � �
����

Substituting the expression of VT in terms of false alarm rate� we have�

PMD � �	� PFA�
r�pP��K�VT � �
��	�

giving

P��K�VT � �
PMD

�	� PFA�r�p
� !



VT �M��K

S��K

�
�
����

Hence�

VT �M��K � S��K!
��

�
PMD

�	� PFA�r�p

�
�M��K � S��K ���p �
����

where

���p � �!��

�
PMD

�	� PFA�r�p

�
� !��

�
	� PMD

�	� PFA�r�p

�
� !�� �	� PMD� �
��
�

since usually� PFA 
 	�

Approximations of M��K and S
�
��K � are obtained considering the exceeding of threshold

only due to the signal part� and not due to the noise part� Also� it is assumed that the target

occupies a single pixel� In such a case� we have�

F �x� y� u� v� k� � f�x� y� k� � �F �x� y� u� v� k� 	� � N�M��k� S
�
��k� �
����

It can be easily shown that�

M��K � 	� �K

	� �
�s � S

�
��K �

	� ��K

	� ��
��s �
����

��� Calculation of required SNR

To calculate the SNR required for detection at particular rates of false alarms and mis�

detections� equations �
�	�� and �
���� are combined to give�

M��K �M��K � S��K ���p � S��K ���p �
���


�



Using expressions for S��K� M��K� S��K� and M��K � and assuming �n � �� �s � �� and

�n � �s � �� equation �
��� becomes�

	� �K

	� �
�� ���qq

	� ����q

�
	� �K

	� �
� ��K��	� �K��Kq

	� ���q

�

� �

vuut	� ��K��Kq
	� ����q

���p � �

s
	� ��K

	� ��
���p �
����

The SNR required for detection is given by�

SNRT �
�

�
� ��qq

	� ����q

�
	� ��K�� 	� �

	� �K
� 	� �K��Kq
	� ���q

�

�
	� �

	� �K

vuut	� ��K��Kq
	� ����q

���p �

s
	� �

	 � �
� 	 � �K

	� �K
���p �
����

For � � 	� replacing �	� �K���	� �� by K� we get

SNRT �
�

�
� �qq

	� ��q

�
	� �

K
� 	� ��Kq
	� ��q

�
�
	

K

vuut	� ��Kq
	� ��q

���p �
	p
K

���p �
����

For K 	�� � �� 	 such that �K 
 	�

SNRT �
�

�
� ��q
	� ����q

�
	� �q
	� ����q

���p ��

s
	� �

	 � �
���p �
��	�

The above expressions of SNRT can be written in the form�

SNRT � A�B ���p � C �	� p �
����

where A� B� and C depend on K� q� and �� The terms B and C decrease with K� improving

the algorithm performance as K increases� However� the term A increases with K� putting

a lower bound on the required SNR� thus limiting the performance� It can be shown that

this bound increases with q� and hence a lowest possible value of q should be used� This is

intuitively explained� since a maximum is taken over q noise pixels and it is more likely to

be a false alarm when q is large�

��� Temporal averaging and single frame thresholding

as special cases

Recursive temporal averaging algorithm can be considered as a special case of dynamic

programming with p � q � 	� for which �q � � and �
�
q � 	� Hence� the threshold SNR for


�



recursive temporal averaging becomes�

SNRT �
�

�
�
s
	� �

	 � �
� 	 � �K

	� �K
����� � ����� �
����

This expression can also be obtained by using the recursive temporal averaging equations�

F �x� y� �� � � � F �x� y� k� � f�x� y� k� � �F �x� y� k � 	� �
��
�

Also� for � � 	� this expression takes the limit�

SNRT �
	p
K
����� � ����� �
����

The same result would be obtained by using � � 	 in original equations� For K 	�� � �� 	
such that �K 
 	�

SNRT �

s
	� �

	 � �
����� � ����� �
����

For single frame thresholding �K � 	 or � � ��� the threshold SNR reduces to ���� � �����

Note that the �rst term from the dynamic programming algorithm disappears in these

expressions� and there is no lower limit to the performance if � � 	�

��	 Theoretical performance plots

This section describes the behavior of the required signal to noise ratio SNRT for di�erent

values of parameters� It should be noted that lower required SNR means better performance�

Figure 
�	 �a� shows plots of SNRT against K for dynamic programming algorithm with p �

q � 
 and a number of values of �� The false alarm rate is ��	��� ����� per simulation for a
	 mega�pixel image�� and the mis�detection rate is ����	� It can be seen that SNRT decreases

with increase in K� but saturates at a certain point depending on �� Figure 
�	 �b� shows the

corresponding plot for p � q � 	 � i�e�� recursive temporal averaging� Figures 
�	 �c� and �d�

show the plots of SNRT against K with � � 	 and � � 	��	�� respectively� for a number of

values of p and q� It is observed that SNRT increases with q as expected� The SNRT also

increases slightly with p� but the plots cannot show the change� Except in the case of � � 	

and p � q � 	 � i�e�� temporal averaging � the SNRT saturates at some minimum value as

K 	��

��
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Figure 
�	� Plots of SNRT against K for� �a� p � q � 
 �dynamic programming� and

number of � values� �b� p � q � 	 �temporal averaging� and number of � values� �c� � � 	

and number of p and q values� �d� � � 	��	� and number of p and q values� The parameters

used are� FA � �� 	����MD � ����	�

�	



Table 
��� Parameters used for calculating the theoretical performance of algorithms�

Parameter Dynamic prog Single frame Temp� Avg� �stat�

FA �� 	����pixel � �����image
MD ����	�pixel

� 	��	�

K �� 	 ��

q 
 " 	

Table 
��� Comparison of theoretical performance of the algorithms with observed perfor�

mance on �� � targets�

Algorithm Theoretical SNR Observed SNR

Dynamic Prog ��
�
� ���


Single frame ����		 ��	

Temp� Avg� �stat�� 	��� 	���

��
 Comparison between theoretical and observed per�

formance

The parameters used in the calculation of theoretical performance of the algorithms for ���
targets are shown in Table 
��� The calculated and the observed SNR threshold for these

parameters for various algorithms are shown in Table 
���

One can observe that the actual performance of the algorithm for �� � targets is slightly
better than the theoretical performance for most of the algorithms� The reason for this is�

that a � � � target occupies at least one pixel completely� and a few other pixels partially�
Hence� its performance should be slightly greater than the calculated performance in which

one assumes that the target occupies exactly one pixel�

To correct this problem� point targets were used in place of ��� targets� The experiments
in Chapter � were repeated using point targets� The comparison between the calculated and

observed SNR for a number of false alarm and mis�detection rates are shown in Table 
�
�

��



Table 
�
� Comparison of theoretical performance of the algorithms with observed perfor�

mance on point targets for a number of di�erent values of false alarm �FA� and mis�detection

�MD� rates�

Algorithm FA rate MD rate Theo� SNR Obs� SNR

Dynamic Prog� �� 	���������simul ����	 ��
�
� ��	�

Dynamic Prog� 	����	�simul ���	 ����	� ������

Dynamic Prog� 	����	�simul ��	 ���	�	 	�����

Dynamic Prog� 	��	�	���simul ��	 	����� 	��
�	

Temp� Avg� �� 	���������simul ����	 	��� 	����

Temp Avg� 	����	�simul ���	 	�



 	�
��

Temp Avg� 	����	�simul ��	 	���	� 	���
�

It can be seen that the calculated and observed SNR rates agree very well in most cases�

However� in the case of extremely low false alarm and mis�detection rates� the observed SNR

is greater than the calculated SNR for the dynamic programming algorithm� The reason for

this is the normal approximation used for the distribution of resulting output�

���� E�ect of approximations

Approximations were used to derive the closed form expressions� In this section� the e�ects

of these approximations are described�

Normal approximation

Normal approximation was used for maximum of q normal variables� The comparison of

the probability density� and the complementary cumulative distribution functions of the

maximum of q � 
 standard normal variables� and their normal approximation are shown in

Figure 
��� It can be seen that the approximation is good in the interior� where probability

density is high� but is inaccurate in the tails� where the probability density is low�

Due to the di�erence in these distributions� the probability of false alarms is underesti�

mated� In fact� to get the actual value of the false alarm rate� the function corresponding

to the actual cumulative distribution of the output F should be used in place of cumulative

��
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Figure 
��� Probability distributions of normal approximations� �a� Probability density

function �p�x� and pn�x�� �b� Complementary cumulative distribution �Q�x� and Qn�x��

against x of the maximum of q � 
 standard normal variables �solid line� and the normal

approximation having same mean and variance�

normal distribution� But this distribution is di�cult to obtain in closed form�

To get an idea of the di�erence between the actual distribution and the normal approxi�

mation� consider the function corresponding to the complementary cumulative distribution

Q�x� � Pr�X 	 x� of the maximum of q � 
 normal variables as shown in Figure 
���

For Q�x� � 	���� we get x � ����� whereas for normal distribution the corresponding

Qn�x� � 	�
�� gives x � 
���� The di�erence is around 	�  but is smaller for smaller values

of x�

At each step of the recursion� maximum of q instances of F at time k � 	 are taken and
added to the input f at time k to obtain the output F at time k� Hence� the distribution

of the output F at each time should be a better approximation of normal distribution than

Q���� since a normal variable �f� is added to the maximum term for obtaining the output F �
Also� since the normal approximation for F is good in the interior� the mean and variance

of maximum of q instances of F will be close to what is computed assuming the normal

distribution� Hence� the mean and variance calculations are not a�ected much�

Furthermore� it is observed that the threshold SNR changes are small even for large

changes in false alarm and mis�detection rates� In any case� one would not directly use the

false alarm and mis�detection rates during the application of the algorithm� but estimate

these dynamically using the output from the algorithm�

�




Approximation in false alarm estimation

Another approximation was performed while computing the mean value M��K of the noise

output� used in false alarm estimation� For equation �
�	��� � actually depends on k� which

makes it impossible to get an exact analytical expression� It was assumed that � is �xed

and approximately equal to 	��� corresponding to a �rst order approximation� However� it

is observed that the value of M��K does not change much with � even for the extremes of

� � � or � � 	� Hence� the approximation is reliable�

Approximation in mis�detection estimation

In the case of mis�detections� the output of the algorithm at a target point is assumed to

be solely due to the target� without the e�ect of noise� The noise can add or subtract the

target intensity� However� since maximum is taken over q pixels at every stage� bias is likely

towards adding� Hence� the mis�detections are likely to be less than what are estimated�

��



Chapter �

A Special Approach for Hazard

Detection

It is well known in the pilots� community� that an object on a collision or near�collision course

remains stationary or nearly stationary in its ��D image view �	
�� The closest distance that

an aircraft would approach another before moving away from it� is known as the distance

of passage� and the time to reach that point is known as the time to passage� or time to

�collision�� For ensuring safety� the distance of passage should be larger than a certain limit�

and objects with a smaller distance of passage should be detected before the time to collision

becomes too small� It can be shown that the rate of translation of the object in the image

is proportional to the distance of passage� Using this property� the rate of image translation

can be used to separate hazardous objects from clutter� since the former have a smaller rate

of translation�

Another useful property which can be used to discriminate hazardous objects from clutter

is the rate of image expansion� which is approximately inversely proportional to the time

to collision of the object� Nelson and Aloimonos �	�� use the image expansion in terms of

the �ow �eld divergence to estimate the time to collision� for separating obstacles� Francois

and Bouthemy �� separate the image motion into components of divergence� rotation� and

deformation� Ancona and Poggio �	� use 	�D correlation to estimate optical �ow for a time�

to�crash detector� Baram and Barniv ��� rely on object texture to extract information on

local expansion� Instead of estimating a numerical depth value� an object is classi�ed as

�safe� or �dangerous� using a pattern recognition approach�

Most of these methods are useful for objects of larger sizes� However� in this case� the

object sizes can be very small� even sub�pixel� along with very small rates of expansion�

��



Hence� a feature based approach was used in this work� where features were tracked� and

their expansion estimated over a large number of frames�

This chapter describes the conditions under which the rates of image translation and

expansion can be used to separate an object on collision course from the ground clutter�

Methods to estimate the image translation and expansion are proposed and tested on real

image sequences obtained from a camera mounted on an aircraft�

��� Scene geometry

Consider an object approaching towards the aircraft with a relative velocity of V as shown

in Figure ��	 �a�� Let p be the distance of passage � i�e�� the closest distance that the object

approaches the camera � and � be the angle between the line of sight of the target and the

relative velocity vector V � Let 
 denote the time to passage �or collision� which is the time

the object takes to reach the distance of passage� The object distance is r� whereas distance

that the object travels until it reaches the point of passage P is z�

��� Detection using translation

As the object moves� the angle � as well as distances r and z change� but the distance of

passage p is constant� The rate of angular translation of an object in the image is T � #��

The pixel translation is approximately given by multiplying the angular translation by the

focal length� By geometry of Figure ��	 �a�� we have�

z � p cot� ���	�

To �nd the rate of translation #�� this expression is di�erentiated to get�

#z � �p�csc� �� #� �����

The magnitude of the relative velocity V is the rate of decrease of z� given by�

V � � #z � p�r�p�� #� �����

Also� the time of passage is given by�


 � z�V � r cos��V ���
�
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Figure ��	� Geometry of �a� target �b� background moving relative to the camera�
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From equations ����� and ���
�� the rate of target translation is given by�

T � #� �
pV

r�
�
p cos�


r
�����

Thus� the rate of image translation is proportional to the distance of passage� and the

objects on a collision course are likely to have a smaller rate of translation compared to other

objects� However� this rate is also dependent on the target distance� and a nearer target

moves faster in the image than a farther target with the same distance of passage� If Smin is

the smallest visible dimension that an object can have� the corresponding size in the image

is given by�

s � smin � Smin�r �����

Hence� from equation ������ one can write�

T

s
� p cos�


Smin

� p


Smin

����

Hence� an object on a near collision course� having su�cient time before imminent collision

has the ratio of its image motion to its image size bounded by the above pre�computable

limit� For example� if the distance of passage of p � 	��m ���� ft� is allowed� and an object

of smallest size of Smin � 	��m �
 ft� is to be detected before 
 � �� seconds ��� frames��

then this ratio becomes 	�� � i�e�� the image motion per frame is at the most 	��th of the

image size of the object� However� in actual practice� a larger range of velocities should be

checked� to have a safety margin�

It should be noted that the above relationship is valid only if the aircraft does not rotate

or vibrate around its own axes� If there is rotation� it should be compensated by using the

data from the aircraft navigation system� In the absence of this data� it may be possible to

use image features due to clutter �if available� to perform the compensation� by modeling

their image motion due to camera rotation�

If this compensation is successful� the velocity to size ratio of the object would be

bounded� By reducing the image resolution to an appropriate level� the image velocity

of the object would also be restricted� Hence� using pyramid construction� target detection

can be performed at a number of resolutions� and the suitable resolution selected� This also

leads to spatio�temporal integration of the image data and the ampli�cation of SNR which

could enable detection of sub�pixel or low�contrast objects in uniform background� such as

clear or overcast sky�

The relationship between image motion and the distance of passage can be used to remove

the clutter which is not on collision course and thus expected to have a large image motion�

��



However� the image motion is inversely proportional to the distance of the object from the

camera� Thus� if clutter is at a large distance� it too could have a small image motion� The

conditions under which an object on the collision course can be distinguished from ground

clutter at the same image position are derived below�

Let r� and p� denote the background distance� and the minimum distance of approach for

the background� respectively� as shown in Figure ��	 �b�� The relative velocity V� between the

camera and the background is actually the magnitude of the camera velocity� By substituting

these parameters in equation ������ the rate of background translation can be written as�

T� �
p�V�
r��

�����

Let h� � hc � hb denote the di�erence between the camera altitude hc and the background

altitude hb� Also� the angle of the camera velocity above the horizontal �not horizon� is ��

From Figure ��	 �b�� we have�

r� � d sec � �����

p� � r� sin�� � �� ���	��

Here� d is a function of the relative height h� and the angle �� If the earth were �at �or � is

large�� refraction of light is negligible� and the terrain is smooth� the dotted line corresponding

to d would coincide with the surface of the earth� and we would have

d � h� cot �

However� if we express�

d�h�� �� � h� cot �f�h�� �� ���		�

then the e�ects of the earth�s curvature and refraction of light ray would be incorporated

in the function f � If these factors can be neglected� then f�h�� �� � 	� The expression for
f using the curvature of the earth is derived in Section ��
� Also� using equation ������ one

can write�

r� � h� csc �f�h�� �� ���	��

Substituting equations ���	�� and ���	�� in ������ the rate of background translation T� is

given by�

T� �
V� sin�� � ��

r�
�
V� sin�� � �� sin �

h�f�h�� ��
���	��

If the hazard is to be discriminated from the background in the same line of sight� the

rate of translation of the hazard must be much smaller than that of the background � i�e��

��



T � ���t T� with �t 	 	� having a larger value for greater discriminating power� Using

equations ����� and ���	��� we have�

p cos�


r
� ���t

V� sin�� � �� sin �

h�f�h�� ��
���	
�

Hence� the object distance r should be larger than the following expression�

r � �tph�f�h�� �� cos�


V� sin�� � �� sin �
�
�tpDf�h�� ��

p
	�Q�

sin�� � �� sin �
���	��

with

D �
h�

V�

� Q �
p

r
� sin� � cos� �

q
	�Q� � 	 �for p
 r� ���	��

Hence� � should satisfy�

sin�� � �� sin � � �tDQ
q
	�Q�f�h�� �� ���	�

Also� using T � ���t T�� with equations ����� and ���	��� one can write�

p cos�


r
� ���t

V� sin�� � ��

r�
���	��

Since the object distance cannot be greater than the background distance in the line of sight�

r � r�� Hence� one can also write�

sin�� � �� � �tp cos�


V�

r�
r
� �tp

p
	�Q�


V�
���	��

For p 
 r or Q 
 	� this condition is approximately independent of r� It can be said that

for detection to be possible at all for a particular � and �� the above condition is necessary

irrespective of the target distance r� provided it is su�ciently large�

If the curvature of the earth and the refraction of light can be neglected� then f � 	� The
necessary condition in equation ���	�� does not simplify� However� equation ���	� reduces

to�

sin�� � �� sin � � �tDQ
q
	�Q� ������

On solving for �� this yields�

� � 	
�

�
cos��

�
���tDQ

q
	�Q� � cos�


� �

�
����	�

If � � �� the solution for � is simpler�

� � sin��
r
�tDQ

q
	�Q� ������

�	



For example� if we have�

p � 	��m� 
 � �� s� V� � 	��m�s� h� � 	 km� � � �� �t � ��� ������

For these values D � ����� and from equation ���	�� the necessary condition is � � ����
This condition corresponds to the target being at the same position as the background�

which is r � r� � 	� km � ��
 nmi or Q � ���	�� using equation ���	��� However� if the
target is nearer� the condition on � is determined by equation ���	� or ������� For example�

if a hazard should be detected at r � � km � ��nmi or Q � ����� one would really need
� � ��	�� The required � increases as r decreases�

��� Detection using expansion

Another discriminating feature between objects on collision course� and objects much farther�

is the time to collision� It is well known that the rate of image expansion� � i�e�� the increase

of the image size of an object � is inversely proportional to the time to collision�

In Figure ��	 �a�� as the object comes closer to the camera along the line of z� its size in

the image will become larger� The rate of this expansion of any object is de�ned as the ratio

of the rate of increase in its size to the size at that time� � i�e�� E � #s�s � where s is the

size of the object in the image� Since s � S�r where S is the object size which is assumed

constant� we have #s � �S #r�r�� and
E � � #r�r ����
�

By geometry of Figure ��	 �a��

r� � z� � p� ������

To �nd the rate of expansion� this expression is di�erentiated to yield�

�r #r � �z #z � ��zV ������

Hence� rate of target expansion is given by�

E � � #r
r
�
zV

r�
�
V cos �

r
�
cos� �



�����

where the time to passage is�


 � z�V � r cos��V ������

For 
 � �� s � �� frames� the ratio is ��	�  per frame� which is a very small magnitude�

This small expansion can be measured by tracking it over a large number of frames�

��



For estimating the rate of expansion of the background� the corresponding parameters

for the background are substituted in equation ����� to give�

E� �
z�V�
r��

������

Using z� � r� cos�� � �� with equations ����� and ���		�� the rate of background expansion

can be written as�

E� �
V� cos�� � ��

r�
�
V� cos�� � �� cos �

d
�
V� cos�� � �� sin �

h�f�h�� ��
������

If reliable discrimination of the hazard from the background in the same line of sight

is required� the rate of expansion of the hazard must be much larger than that of the

background� � i�e�� E � �eE� with �e 	 	� having a large value for greater discriminating

power� Using equations ����� and ������� one needs�

cos� �



� �e

V� cos�� � �� sin �

h�f�h�� ��
����	�

or

cos�� � �� sin � � h�f�h�� �� cos
� �

�e
V�
� ���e D�	�Q��f�h�� �� ������

where D and Q are given by equation ���	��� For the case of f � 	� the equation ������
reduces to�

cos�� � �� sin � � ���e D�	�Q�� ������

Explicit solution for � is then given by�

� � 	
�

h
sin��

�
����e D�	�Q�� � sin�

�
� �

i
����
�

For the conditions in equation ������� we need � � ���� for reliable detection using expansion�
It should be noted that the expansion in image size can also be caused by the rotation of

the target aircraft in a way which would expose a larger area to the camera� However� this

false expansion takes place only in the direction perpendicular to the axis of rotation of the

target aircraft� whereas the expansion due to a potential collision would take place uniformly

in all directions� Also� the target expansion will cease after the aircraft fully rotates to a

position where maximum area is exposed to the camera� It may be possible to use these

properties to discriminate between the false expansion and the expansion due to a collision

course�
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Figure ���� Geometry of earth�s curvature� The coordinates used are with respect to earth�s

center�

��� E�ect of horizon

In this section� function describing the e�ect of the curvature of the earth is calculated�

neglecting the e�ects of refraction� Figure ��� shows the geometry of the earth�s curvature�

The coordinates used are with respect to earth�s center� Using this� we have�

d � R sin �� d tan � � h� �R�	� cos �� � h� � d����R� ������

where R � R� � hb� hb is the altitude of the background� R� is the radius of earth� and � is

the angle subtended on the center of the earth by the triangle� Solving this equation yields�

d � R
�
tan � 

q
tan� � � �h��R

�
������

The correct solution is the smaller value of d� since the larger value represents the other

intersection of the line of sight with the earth�

d � R
�
tan � �

q
tan� � � �h��R

�
�

�h�

tan � �
q
tan� � � �h��R

�����

�




By substituting in equation ���		�� we have�

f�h�� �� �
�

	 �
q
	� �h���R tan� ��

������

If � � ���� or R is large� h is small� then f � 	� � i�e�� the earth�s curvature can be neglected�
However� where the line of sight just touches the earth � i�e�� at the horizon � the discriminant

under the square root is zero� then f � � and the corresponding � is�

�h � tan
��
q
�h��R ������

Any value of � smaller than this value corresponds to the line of sight not touching the earth

� i�e�� background above the horizon�

��� Behavior of translation and expansion

Figure ��� shows the variation of the required � with the horizontal� for the possibility of

detection using translation and expansion� against various parameters� E�ect of horizon

was neglected since it was observed that it does not a�ect the plots to a signi�cant extent�

The minimum � for detection using translation� which is shown by dashed line� whereas the

maximum � for detection using expansion is shown by dotted line� However� the minimum

� criterion is only the necessary criterion� For actual discrimination using translation for an

object at a given distance� a larger � is required� The other curves show the required � for

detection using translation for various object distances in meters� and are enveloped by the

dashed line curve�

Most of the information in these curves can be condensed using the parameter D �

h���
V��� Figure ��
 �a� shows the contours of same D for di�erent values of V� and h� for


 � �� s� Plots of required � for translation and expansion using a number of values of the

target distance r in km� for the distance of passage p � 	��m are shown in Figure ��
 �b��

However� the necessary criterion for translation cannot be expressed using these plots�

��� Estimation of translation and expansion

To reduce the computational complexity of estimating the translation and expansion� a

feature�based approach was used� A morphological �lter ��� which subtracts the opening

and closing of the image from the original image was used to detect positive and negative

features� corresponding to light and dark objects� respectively�

��
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Figure ���� Variation of the required � with the horizontal� for the possibility of detection

using translation and expansion� against a number of parameters� �a� Camera velocity� V��

�b� Relative height between camera and background� h�� �c� Distance of passage� p �d� Time

of passage �or collision�� 
 � Default values of the parameters �except when they vary� are�

V� � 	 km�s� h� � 	 km� p � 	��m� and 
 � �� s� and �t � �e � ���� The minimum � for

detection using translation is shown by dashed line� whereas the maximum � for detection

using expansion is shown by dotted line� The other curves show the required � for translation

for various object distances in meters�
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Figure ��
� Plots for detection using translation and expansion� �a� Plot showing the contours

of same D for di�erent values of V� and h� for 
 � �� s �b� Plots of � required for detection

using translation are shown with various symbols for a number of values of the target distance

r in km� for the distance of passage p � 	��m� Plot of the � required for detection using

expansion is shown with a dashed line�

To estimate the translation of the features over a number of frames� they were tracked

over a number of frames� In case of navigation system data being available� the position of the

features were compensated before performing the tracking� A nearest neighbor approach was

used to determine the corresponding feature in the next frame� and the smoothed estimates of

the feature position and velocity in each frame were obtained using Kalman �lter approach�

This procedure is similar to the one described in Chapter  used for detecting targets crossing

the aircraft�

For detecting expansion� a 	� � 	� window around each feature was explored� The
sub�image corresponding to the window was thresholded� and the connected component

containing the center of the window was found� All the pixels in the sub�image that did

not belong to the component were set to zero� To estimate the size of the component� the

sub�image was convolved with a number of smoothing masks� These masks perform matched

�ltering with a object templates corresponding a number of di�erent sizes� The maximum

output from all these masks was considered as the measure of target strength� The rate of

expansion was measured in terms of increase of the target strength� tracked over a number of

frames� The target strength was plotted against the frame number� and the rate of expansion

was estimated by applying least squares to the logarithm of the target strength�
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��� Results

The estimation of translation and expansion was performed on a sequence of images captured

from an analog camera in which the target aircraft is approaching the camera� Figure ��� �a�

shows a typical frame from the sequence� Figure ��� �b� and �c� show the target track in

the original and the motion compensated images� respectively� Figure ��� �d� shows the plot

of the estimated target size against the frame number� Corresponding plots for two clutter

tracks are shown in Figures ��� and ��� It can be seen that the target expansion is the

large for the target track� and small for the clutter tracks� On the other hand� the rate of

target translation is small for the target track and large for the clutter tracks� Figure ���

shows the signi�cant tracks before and after motion compensation� A scatter plot of the

feature expansion against translation for these tracks� including the target track is shown in

Figure ���� The rate of translation is measured in terms of the displacement magnitude of

the compensated features in 	�� frames� whereas the rate of expansion is measured in terms

of the increase in the logarithm �to base 	�� of the target strength in 	�� frames� It is seen

that the target has a large rate of expansion and a small rate of translation and is located

in the upper left corner of the scatter plot�
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Figure ���� Translation and expansion for target track� �a� Sample image from the last

frame� �b� Target track �c� Target track after compensation� Rate of translation is small

for target track� �d� Plot of expansion against frame number� Rate of expansion is large for

target track�
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Figure ���� Translation and expansion for clutter track� �a� Sample image from the last

frame� �b� Target track �c� Target track after compensation� Rate of translation is large for

clutter track� �d� Plot of expansion against frame number� Rate of expansion is small for

clutter track�
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Figure ��� Translation and expansion for another clutter track� �a� Sample image from the

last frame� �b� Target track �c� Target track after compensation� Rate of translation is large

for clutter track� �d� Plot of expansion against frame number� Rate of expansion is small

for this clutter track�
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Figure ���� Feature tracks �a� before� and �b� after rotation compensation� Target track

surrounded by a rectangle has a small translation after compensation�
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Figure ���� Scatter plot of the feature expansion against translation� The rate of translation

is measured in terms of the displacement magnitude of the compensated features in 	��

frames� whereas the rate of expansion is measured in terms of the increase in the logarithm

�to base 	�� of the target strength in 	�� frames� The target is marked as an encircled

asterisk� and is in upper left corner� having a small rate of translation and a large rate of

expansion�
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Chapter �

Algorithm Fusion

Each of the target detection algorithms has its own advantages and limitations� Hence�

a combination of these algorithms may be used in the ultimate design to overcome their

individual limitations while maximizing their advantages� This chapter describes a method

for combining the algorithms using statistical approach to optimize the performance in terms

of the mis�detection and false alarm rates� In particular� the pre�processing algorithms of

low�stop and morphological �lters� described in Chapter � are combined� The performance

of the fused algorithm is compared with the original algorithms using the methodology

described in Chapter ��

��� Combination of algorithms using a statistical ap�

proach

According to the Neyman Pearson criterion� the optimal Bayesian detector which minimizes

the rate of mis�detection for a particular rate of false alarms is obtained by thresholding the

joint likelihood ratio of the individual detector outputs� or some monotonic function of the

same� The threshold should be such that the desired false alarm rate is obtained�

Consider the joint likelihood ratio of the low�stop and the morphological �lter� Let z �

�z�� z�� be the ��D vector denoting the outputs of the low�stop and the morphological �lters�

respectively� Let p�zjH�� C� and p�zjH�� C� denote the joint probability density functions

for the hypotheses denoting the absence and presence of a target� respectively� for clutter

level estimate C� The likelihood ratio is then given by�

LH�C�z� �
p�zjH�� C�

p�zjH�� C�
���	�






��� Statistical behavior of low�stop and morphological

lters

In the following analysis� it is assumed that the input image pixels are described by the

sum of the signal �� background level � and the camera noise �� which is modeled as an

uncorrelated Gaussian noise of zero mean and variance ���

x � � �  � � �����

If there is no clutter� the distributions of x in absence and presence of the target are given

by�

p�xjH�� � N�� ��� � p�xjH�� � N�� � � ��� �����

If clutter is present� the exact distributions would depend on the nature of the clutter�

Here� it is assumed that the presence of clutter changes the mean background level� and the

variance parameter of the noise� making these parameters space varying�

Low�stop �ltering is performed by subtracting the low�pass �ltered image� using a weighted

spatial average of the neighborhood� from the original image� This �lter attempts to sub�

tract the background level� Since it is a linear �lter� if the input is normally distributed� the

output zl will also be distributed as�

p�zljH�� � N��� ��l � � p�zljH�� � N��l� �
�
l � ���
�

with

�l � fl� � �l � gl� �����

where fl and gl are the ampli�cation gains in the standard deviation and mean due to the

�lter� It should be noted that the background level  is subtracted out by the �lter�

Morphological �ltering is performed by taking the di�erence between the original image

and its opening �positive targets� or closing �negative targets�� Without loss of generality�

only positive targets are considered� which are detected by subtracting the opening from

the original image� This is expected to remove uniform background� as well as most of the

clutter�

To obtain a model for the distribution of the morphological �lter and to verify the distri�

bution of low stop �lter� simulations were performed� A large number of �oating point images

containing Gaussian noise were generated� Low�stop and morphological �lter were applied

to these images� and the histograms of the �lter outputs were obtained� Figure ��	 �a� shows

�



the histogram of the original image with Gaussian noise� Figure ��	 �b� shows the histogram

of the low�stop �lter output� which is normally distributed with zero mean� as expected�

The histogram of the morphological �lter output is shown in Figure ��	 �c�� It can be seen

that the histogram resembles a normal distribution with a positive mean� However� since

the opening of an image is always less than or equal to the original image� the �lter output

is always non�negative� Hence� the distribution is truncated on the negative side� and has an

impulse at zero in place of the negative values� For clarity� the distribution after removing

the impulse is shown in Figure ��	 �d��

This distribution can be modeled by using a hypothetical normally distributed variable

�m � N��m� �
�
m�� The output zm of the morphological �lter can be expressed in terms of �m

as�

zm � max��m� �� �����

It can be shown that the explicit distribution of zm is given by�

p�zmjH�� �
u�zm�

�m
G
�
zm � �m

�m


� ��zm� !

�
��m
�m


����

where u��� is the unit step function� ���� is the Dirac impulse function� and G��� and !��� are
the probability density and cumulative distribution functions of a standard normal variable�

respectively� It can be shown that the mean and variance of this distribution� which are

di�erent from the parameters �m and �
�
m� can be expressed as�

mm � �m!��m��m� � �mG��m��m�

s�m � ��m!��m��m��mm�mm � �m� �����

Hence� the parameters �m and �m can be obtained from the observed values of mm and

s�m by using a numerical method� It can be shown that this procedure yields the maximum

likelihood estimates of the parameters� The parameters derived from the above simulations

are shown in Table ��	�

To obtain the distribution in presence of a target� a number of simulated targets of

�xed amplitude were added to each of the images generated above� Morphological �lter was

applied to these images� and a histogram of pixel values only at the target positions was

obtained� However� since the number of targets is not as large as the total number of pixels

in the image� the histogram is less reliable than in the case of absence of targets� These

experiments were repeated for various signal amplitudes and the sample mean and variance

of the outputs were computed� The sample means and variances were taken as the estimates

�
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Figure ��	� Statistics of low�stop and morphological �lters� Histograms of� �a� Input image

with Gaussian noise� �b� Output of low�stop �lter� �c� Output of morphological �lter� �d�

Output of morphological �lter after removing impulse at zero value�





Table ��	� Statistical parameters of low�stop and morphological �lters derived from simula�

tions

Parameter Value

� 	���

ml � �l ����e��� � ���
sl � �l ����	� � 	���
mm �����

sm �����

�m 
�����

�m 	���
��

of the means and variances of the distributions� For the low�stop �lter� the parameters �l

and �l coincide with the distribution mean and variance ml and s�l � respectively� and are

approximately equal to the signal amplitude � and the input noise standard deviation ��

respectively� corresponding to gl � 	 and fl � 	� For the morphological �lter� the actual
parameters �m and �m of the underlying normal distribution were calculated from the ml

and s�l using the simultaneous equations ������ It was observed that the parameter �m

is approximately equal to the noise intensity �� and does not change much with the signal

amplitude �� However� the parameter �m increases non�linearly with �� It has a positive value

at � � � � i�e�� noise�only condition � and increases with a lower rate than the corresponding

low�stop �lter parameter �l� Figure ��� shows the plots of the parameters �l and �m against

the signal amplitude ��

The output of the morphological �lter is invariant to the constant background level �

Furthermore� it also suppresses the clutter� Hence� the e�ective �noise� intensity for the

morphological �lter would be di�erent from that for the low�stop �lter in case of cluttered

scenario� and is denoted by �m� However� in the case of the above simulations it is the

same as the original noise intensity �� If �m as well as the signal amplitude � are scaled

by a constant factor� �m and �m will get scaled by the same factor� Hence� outputs of the

morphological �lter for any general �m can be written as�

�m � �m fm � �m � �m gm



�

�m

�
�
�m
fm

gm



fm�

�m

�
�����

where fm is the gain in standard deviation �fm � 	�� neglecting the dependency on the target

�
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Figure ���� Plot of parameters �l and �m against signal amplitude � for � � 	��

SNR� and gm��� is the gain in mean� depending on the target SNR ���m� The function fm

can be obtained from the experimentally determined values of �m and �m for � � 	�� plotted

in Figure ����

It was also observed that there is a correlation between the outputs of the low�stop

and the morphological �lters� Hence� the joint distribution of the two outputs is modeled

as a normal distribution� truncated for the morphological �lter� Assuming a hypothetical

random variable � � ��l� �m�
t which is normally distributed� the actual output vector z can

be expressed as�

z � �zl� zm�
t � ��l�max��m� ���

t ���	��

The parameters of distribution of z are�

� �

�
� �l

�m

�
	 � $ �

�
� ��l ��l�m

��l�m ��m

�
	 ���		�

where � is the correlation coe�cient� and ��l and �
�
m are the individual variances of zl and

zm� respectively� The distribution mean and covariance matrix are given by�

m �

�
� ml

mm

�
	 � S �

�
� s�l ��slsm

��slsm s�m

�
	 ���	��

�



Note that due to the linearity of the low�stop �lter� we have ml � �l� sl � �l�

However� using these relations� it is analytically di�cult to calculate the actual correlation

coe�cient parameter � from the observed correlation coe�cient ��� Furthermore� such a

computation would have to be repeated for every pixel� which is highly ine�cient� Hence�

the value of � � �� is currently being used�

Using the above models of low�stop and morphological �lter outputs� the distribution of

z for zm 	 � is given by�

p�zjH�� � j��$j���� exp
h
�z � ���

t$���z � �����
i

p�zjH�� � j��$j���� exp
h
�z � ���

t$���z � �����
i

���	��

For zm � �� p�zjHi� � � Also� there is an impulse function at zm � �� so that the integral of

p becomes unity�

��� Bayesian fusion of multiple lters

The combined likelihood ratio of the two �lters is given by�

LH�C�z� �
p�zjH�� C�

p�zjH�� C�
� N����$C�

N����$C�
���	
�

where �� and �� are ��D vectors denoting the mean outputs of the algorithms in presence

and absence of target� The covariance matrix $C � which depends on the clutter level� can

be estimated using the image� and will be denoted by $ for brevity� The same covariance

is used for the presence and absence of the target� since it is experimentally observed that

there is not much di�erence between the respective covariances�

Using equation ���	��� the log likelihood ratio �LLR� is given by�

l�z� � logLH�C�z� � �	
�
�z � ���

t$���z � ��� �
	

�
�z � ���

t$���z � ���

� ��� � ���
t$���z � ���� 	

�
��� � ���

t$����� � ��� ���	��

The parameters of the LLR in absence of target � i�e�� E�zjH�� � ��� V �zjH�� � $ � can be

computed as�

E�l�z�jH�� � ��� � ���
t$��E�z � ��jH��� 	

�
��� � ���

t$����� � ��� � �	
�
d�

V �l�z�jH�� � ��� � ���
t$��V �z � ��jH��$

����� � ��� � d� ���	��

��



where d known as the de�ection coe�cient �	�� is the generalization of the signal to noise

ratio for multiple dimensions�

d �
q
��� � ���t$����� � ��� ���	�

When the target of any strength is present� the variance parameter still remains the same

but the mean parameter changes� For the target strength such that E�zjH�� � ��� the LLR

parameters are given by�

E�l�z�jH�� � ��� � ���
t$��E�z � ��jH��� 	

�
��� � ���

t$����� � ��� �
	

�
d�

V �l�z�jH�� � ��� � ���
t$��V �z � ��jH��$

����� � ��� � d� ���	��

It is seen that the mean and variance of the LLR are dependent on the mean and variance

parameters of the �lter outputs� Due to this� the probability of false alarm and mis�detection

also depends on these parameters� Accordingly� two approaches of obtaining a detector are

shown below�


���� Constant False Alarm Rate �CFAR� detector

To get a constant false alarm rate irrespective of the local variance� the LLR is normalized

so that it would have a zero mean and unit variance in absence of the target� The resulting

function is given by�

D�z� �
l�z�� E�l�z�jH��q

V �l�z�jH��
�

��� � ���
t$���z � ���q

��� � ���t$����� � ���
���	��

This is a matched �lter� which matches the ��D outputs from low�stop and morphological

�lters� to the expected outputs of these �lters� Since D�zjH�� � N��� 	�� if a threshold 
 is

applied� the false alarm rate is given by�

PFA � 	� !



 � E�D�z�jH��

V �D�z�jH��

�
� 	� !�
� ������

where !��� denotes the cumulative distribution of a standard normal variable� Note that
this is now independent of any parameters� In presence of a target so that E�zjH�� � ��� it

can be easily seen that D�z� � N�d� 	�� Hence� the mis�detection rate is given by�

PMD � !




 � E�D�z�jH��

V �D�z�jH��

�
� !�
 � d� ����	�

�	



The CFAR approach attempts to maintain a constant false alarm rate all over the image�

irrespective of the local variance� Hence� it would be useful if a constant false alarm rate is

required in all parts of the image� for example� if the parts are processed separately on parallel

processors� To check the conditions under which this �lter is optimal� the log likelihood ratio

l�z� is written in terms of the discriminant function D�z� as�

l�z� � dD�z�� d��� ������

It can be seen that� l�z� and D�z� are monotonic to each other when the de�ection coe�cient

d� given by equation ���	� remains constant� Under such conditions� thresholding D�z� is

equivalent to thresholding l�z�� the latter being the Bayesian optimum� The de�ection

coe�cient is dependent on the covariance of the noise� as well as the target strength� and

is the generalization of SNR for multiple dimensions� Thus� if the variance parameters of

the individual �lter outputs� as well the target amplitudes� are constant across the image�

this approach is optimal in terms of the false alarms and mis�detection rates� However�

in practice� the parameters �especially the low�stop �lter output variance� do depend on

the clutter level� In such a case� if the target amplitude is constant throughout the image�

the CFAR approach is not optimal� However� if the criterion for good detection is to detect

targets having a particular SNR � i�e�� stronger targets in cluttered regions but weaker targets

in uncluttered regions � the CFAR approach can be considered optimal�

It can be seen that D�z� is dependent on the target amplitude � through �� � ��� as

well as d� If �� � �� is a linear function of the target amplitude �� it would cancel out in

equation ���	�� and D�z� would become independent of the signal amplitude �� However� if

�� � �� is non�linear� the �lter would be optimal only under speci�c conditions�

The false alarm rate is determined by the threshold 
 � whereas the mis�detection rate is

also determined by the de�ection coe�cient d� Consider optimizing the matched �lter for

a particular d� in an environment with clutter covariance $� If � is the signal amplitude�

equations ����� and ����� yield�

�� � �� �

�
� �l� � �l�

�m� � �m�

�
	 �

�
� gl� � 	�

gm� �
�m

�� gm�	�
�
�m

�
	

�

�
� gl�

�m
fm

�
gm�fm��m

�� gm�	�
�
�
	 �
����

Using this expression� the following equation should be numerically solved for � by evaluating

�� � �� using equation ������ with the particular d�

��� � ���
t$����� � ��� � d� ����
�

��



However� if the covariance matrix $ varies throughout the image� this procedure would have

to be carried out for all pixels� which would be highly ine�cient� Furthermore� the procedure

optimizes only for a particular value of d�

Alternatively� if one assumes that d and � are small� one can optimize the fusion using a

Locally Most�Powerful �LMP� test �	�� 	�� For small value of �� we have�

�� � �� �


��

��

�
���

� � �
�
� gl

g�m���

�
	 � � s � ������

where s is ��D vector independent of �� The expression is now linear in �� and the discriminant

function D�z� becomes independent of ��

D�z� �
st$���z � ���p

st$��s
������

with

s �
h
gl g�m���

it
�����


���� Direct thresholding of Log Likelihood Ratio �LLR�

As shown in the previous section� if the amplitude of the signal to be detected is �xed

irrespective of the local variance� the overall mis�detection rate for a given overall false

alarm rate is not minimized by the CFAR approach� In fact� there cannot be a single

optimal detector for all amplitudes� Hence� the fusion should be optimized for a particular

amplitude� A criterion for choosing this amplitude is described below�

Suppose that some particular minimum rates of false alarms as well as mis�detections are

required for the algorithm� The amplitude corresponding to the minimum possible variance

� i�e�� the variance of the camera noise without clutter � can be used to tune the fusion� If

the actual amplitude is smaller than this amplitude� even an optimal detector tailored to

that amplitude will not give the required false alarm and mis�detection rates� On the other

hand� since the performance of the detector increases monotonically with the amplitude� a

larger amplitude yields a better performance� though it may not be optimal�

Suppose the LLR threshold is 
 � Using the mean and the variance of the LLR in absence

and presence of the target� given by equations ���	�� and ���	��� the false alarm and mis�

detection rates can be computed as�

PFA � 	� !



 � d���

d

�
� PMD � !




 � d���

d

�
� 	� !



d���� 


d

�
������

��



If one denotes�

�� � !
���	� PFA� �


 � d���

d
� �� � !

���	� PMD� �
d���� 


d
������

then 
 can be eliminated to obtain�

�� � �� � d �
q
��� � ���t$����� � ��� ������

The target amplitude can be chosen such that �� corresponding to it satis�es this equation�

using $�� under noise only conditions�

��� Application on images

To apply this procedure on images� the statistical parameters are computed in an annular

�	��	 window around each pixel� where an 		�		 window immediately around the pixel is
excluded to reduce the biasing of parameters when the target is present at the pixel� There

is a trade�o� between using larger sized window giving more reliable estimates� and smaller

sized window giving better localization in case of space varying clutter intensity� The window

size used here was arbitrary� However� use of di�erent window sizes can be explored to �nd

the optimum window size�

E�cient methods are used to estimate the distribution mean m and the covariance S at

each pixel of the low�stop and morphological output images� From these� the estimates of �

and $ are calculated and stored as images� However� in some experiments� �xed values of �m

and ��m were used for the morphological �lter� since the estimates are less reliable� but do not

change much over the image �unlike low�stop �lter� where these parameters heavily depend

on the clutter�� The template signal for the matched �lter is calculated using equation ������

and the matched �lter is applied separately to each pixel�

��� Results

The algorithm fusion approach was evaluated using the performance characterization ap�

proach of Chapter �� Background images obtained from digital and analog cameras shown

in Figures ��� �a� and �b�� respectively� were used for false alarm analysis� For mis�detection

analysis� a number of targets of size �� � were added to these images� Low�stop and mor�
phological �lters were applied to these images� The outputs of these �lters were fused using

the two approaches described above� The local variance of the low�stop �lter output� which

�




is a measure of clutter� is shown in Figures ��� �c� and �d�� The histogram of the local

variance is shown in Figures ��� �e� and �f�� It is seen that the analog camera image has a

much higher clutter level than the digital camera image�

For the Constant False Alarm Rate �CFAR� fusion� the Locally Most Powerful �LMP�

test was used� This gave the matched �lter template as�

s � �gl� g
�

m����
t � �	��� �������t

gives a slightly lower weight to the morphological �lter when the level of noise is same for

both the �lter outputs� The plots of the mis�detections against the false alarms for the digital

camera images are shown in Figure ��
 �a� and �b�� These use the assumption that the outputs

of the low�stop and morphological �lters are correlated� Algorithm fusion was also performed

assuming independence between �lters � i�e�� � � �� The independence assumption gave a

slightly better performance for the fused �lter as shown in Figure ��
 �c� and �d�� possibly

because the correlation between �lters may not have been adequately modeled� Similar plots

using analog camera images are shown in Figure ����

In both the cases� it is seen that the fused output does not give optimal performance

for all the rates of false alarms� However� it can be observed that the fused output does

give larger weight to the �lter which has a better performance in the particular case� For

example� in the case of digital camera images having relatively low clutter� �Figure ��
�� the

better performing low�stop �lter is given higher a weight� On the other hand� for analog

camera images �Figure ���� with severe background clutter� the morphological �lter which

performs better is given a higher weight� Since the individual �lter which would actually

perform better in a particular case would not be known a�priori� the fusion at least serves

the purpose of selecting the better �lter�

To explore the reasons for the non�optimality of the CFAR approach� the method of

thresholding the log likelihood ratio �LLR� was �rst used in place of the CFAR fusion�

The results of thresholding likelihood ratio are shown in Figure ���� The outputs of the

individual detectors� the likelihood ratio detector using each �lter� and the fused likelihood

ratio detector are shown for amplitudes of ��� and ���� The amplitude used for computing

the likelihood ratio was of ���� which gave the signal template as�

�� � �� � ����� �������
t � ����	��� ������t

which is only slightly di�erent from the LMP template �scaled�� due to the non�linearity of

the morphological �lter�

��
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Figure ���� Images from �a� digital �b� analog camera with partly cluttered background�

Image of the local variance of low�stop �lter output� which is the measure of clutter for

images from �c� digital �d� analog camera� Histogram of the local variance of low�stop �lter

output for images from �e� digital �f� analog camera�
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Figure ��
� Operating curves for digital camera image using CFAR fusion� Assuming cor�

relation between �lters with target amplitudes of� �a� ��� �b� ��� Assuming independence

between �lters with target amplitudes of� �a� ��� �b� ���
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Figure ���� Operating curves for analog camera image using CFAR fusion� Assuming corre�

lation between �lters with target amplitudes of� �a� ���� �b� 
��� Assuming independence

between �lters with target amplitudes of� �c� ���� �d� 
���

��



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

Signal amplitude=6

FA

M
D

lstop
morph
fused

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

Signal amplitude=8

FA
M

D

lstop
morph
fused

�a� �b�

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

Signal amplitude=6

FA

M
D

lstop
morph
fused

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

Signal amplitude=8

FA

M
D

lstop
morph
fused

�c� �d�

Figure ���� Operating curves for digital camera image using LLR thresholding� Using cor�

relation between �lters with target amplitudes of� �a� ��� �b� ��� Assuming independence

between �lters with target amplitudes of� �c� ��� �d� ���
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Figure ��� Operating curves for digital camera image using LLR thresholding� and �xed

value of morphological variance parameter ��m � 	��� and assuming independence between

the �lters� for target amplitudes� �a� ��� �b� ���

However� it was seen that for the matched signal strength of ���� it still did not give

desirable performance� Hence� another reason for this non�optimality was explored� It was

observed that the variance parameter ��m of the morphological �lter output was underes�

timated from the images� This unreliability of was because the estimation was performed

using small windows around every point in the image� Furthermore� there was quantization

error� since the noise in the images was of the same order as the gray level resolution of the

real images� However� since the morphological �lter is comparatively insensitive to clutter�

the value of ��m remains approximately same throughout the image� Hence� the entire back�

ground image from the digital camera �without adding targets� was used to pre�compute the

parameter value as ��m � 	��� The low�stop �lter parameter �
�
l was estimated as before� since

its value does depend on the local clutter level� The correlation coe�cient was assumed to be

zero� The results obtained using these parameters are much better� and shown in Figure ���

Hence� it can be concluded that the performance of CFAR approach was poor due to the

following reasons�

	� CFAR fusion is not optimal under the condition of constant target amplitude�

�� The morphological �lter parameters are not reliably estimated from small sized win�

dows�
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Figure ���� Operating curves for digital camera image using CFAR approach with condition

of optimality� and �xed value of morphological variance parameter ��m � 	��� assuming

independence between the �lters� where the targets have amplitude such that the de�ection

coe�cient d is constant equal to� �a� 	��� �b� 	���

However� as shown before� the CFAR approach is theoretically optimal� when the tar�

get amplitude is not constant� but is adjusted so that the de�ection coe�cient d given by

equation ���	� remains constant� To check the optimality of the CFAR approach for this

condition� another set of experiments was performed� The statistical parameters of the low�

stop �lter were estimated at every pixel using the background image without the addition

of targets� The morphological �lter parameters were estimated for the entire image �instead

of individual pixels�� Using the parameters of the low�stop and morphological �lters� the

de�ection coe�cient d� for a unit amplitude of the signal was computed at every pixel� and

stored as a separate image� False alarm rate was also estimated using this image as before�

For estimating mis�detection rates� targets were added to the background image� The ampli�

tude of the target at a particular pixel was given by d�d� where d� is the function of the pixel

coordinates and d is constant� The mis�detection rate was then estimated from a number of

such images� The LMP template was used for fusing the outputs of the individual �lters�

The plots of the mis�detection rate against false alarm rate are shown in Figure ���� It can

be seen that the fusion output is better or as good as the individual �lter outputs� within

experimental error�
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Chapter �

Detection of Translating Objects

In addition to the detection of objects on a collision course� it is useful to monitor the objects

which are crossing the aircraft� For this purpose� a system was designed to speci�cally detect

objects having a translational motion in the image� To distinguish translating objects from

ground or cloud clutter� the following criteria were used�

	� The object should have su�cient signal strength�

�� The object should have an image velocity greater than a threshold�

�� The object should have a consistent motion � i�e�� its velocity must not change abruptly�

The system to detect translating objects has been implemented on the pipelined image

processing system� the DataCube MaxPCI described in Section ��� to obtain real time perfor�

mance� The system was mounted on the Air Force Total In�Flight Simulator �TIFS�NC	�	
�

aircraft� and �ight tests were conducted by NASA with another aircraft �ying in front of it�

The detection and tracking of the target aircraft were demonstrated during the �ight test�

This system is divided into two stages� an image processing stage and a tracking stage�

The �rst stage consists of image processing steps which remove most of the clutter� and

isolate potential features which could be translating objects� This stage involves repetitive

image operations such as convolution� pointwise operations� histograms� etc� which are

suitable for a pipelined architecture� and can be performed in integer format� Hence� these

steps are implemented on the DataCube machine� The output of this stage is a list of image

features which are likely to contain the target objects� including their positions and the signal

strengths� However� the list may also contain features corresponding to background clutter�

which are not separated by the simple image processing steps of the �rst stage� The second
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stage tracks these features to distinguish the genuine translating objects from background

clutter using the criteria mentioned above� Since the �rst stage has reduced the volume of

data to be operated on� more complicated target tracking algorithms can be implemented

even on the host PC associated with the DataCube� The threshold used in the �rst stage

is adjusted dynamically to give a nearly constant number of features for the second stage

so that they can be processed in real time using the slower host� This matching of the

output rate of one stage to the input rate of the next stage is known as the rate constraint

criterion ����

��� Image processing stage

This stage performs the basic image processing steps to suppress clutter and extract features

which could potentially be translating targets�

	� Resolution Reduction� The resolution of the image is reduced so that the system is

capable of operation in real time� The image is convolved with the following low�pass

�lter mask and then down�sampled by two in both horizontal and vertical directions�
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Low�pass �ltering suppresses high frequencies� which would otherwise have been aliased

to low frequencies by the down�sampler� Although the image resolution is reduced� the

signal to noise ratio is actually enhanced� This is because the target size is usually

greater than � pixels� leading to spatial integration of the target contrast�

�� Low�stop �ltering� A low�stop �lter is applied to the reduced image to suppress back�

ground clutter� The �lter is implemented by convolving the image with the following

masks� one after the other�
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The maskM� is a smoothing mask� which performs spatial integration for large targets�

A rectangular mask is used since the targets are expected to have a greater width than

height� Application of the mask M� is equivalent to subtracting a smoothed image

from the input image� The overall result of the two convolutions is the subtraction

of a low�pass �lter output with a larger mask from a low�pass �lter output with a

smaller mask� Hence� this step suppresses uniform background intensity and weak

clutter corresponding to low frequencies� and also performs spatial integration for larger

objects�

�� Image di�erencing� Image di�erencing is performed on the low�stop �ltered images by

subtracting consecutive frames� This is equivalent to a low�stop �lter in temporal

direction� Since the object is assumed to be translating� image di�erencing suppresses

stationary objects corresponding to background clutter� It should be noted that steps

	 to � are theoretically interchangeable� since they are all linear �lters� However�

since these operations are performed with integer arithmetic of limited precision� the

particular order of the steps is used to reduce the truncation error�


� Non�maximal suppression� Directly using the output of the previous step would give

rise to a large number of features for an extended target� Non�maximal suppression

is performed to get a single feature �or sometimes a small number of features� for the

entire target� Pixels can have both positive or negative values corresponding to bright

and dark targets� respectively� Hence� an absolute value image is �rst formed� and

every pixel which is not a local maximum in its � � � neighborhood is marked� The
marked pixels are set to zero in the original image � i�e�� the image before taking the

absolute values�

�� Histogram formation� To extract candidate features� the output from the above steps

should be thresholded� Furthermore� the threshold should be chosen so that the number

of features neither overloads the tracking stage� nor keeps it unnecessarily idle� Hence�

the threshold is selected so that the number of pixels exceeding the threshold is less than

or equal to a �xed rate which matches the operation speed of the tracking stage� For this

purpose� a histogram of the image is constructed� The threshold then is determined as

the smallest pixel value for which the number of elements in the histogram bins above

this value does not exceed the �xed rate� Applying this value as the threshold would

then ensure that the number of features remains bounded�
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�� Thresholding and feature output� Pixels in the image with the output value greater

than the threshold are separated as features� and their positions as well as the ampli�

tudes are transmitted to the tracking stage�

��� Tracking stage

This stage maintains a list of tracks containing the frame number� unique ID� position�

velocity� and amplitude� The list is empty in the beginning� he following steps are repeated

for every frame for which the list of features is received from the image processing stage�

	� Track update� For each track in the list of tracks� the list of features is scanned to obtain

features in a neighborhood window around the track position� If one or more such

features are found� the one with the largest amplitude is selected as the continuation

of the track� Using the coordinates �z�� z�� of this feature� as well as the current track

position �x�� x�� and velocity �u�� u��� the expected position and velocity for the next

frame is estimated using a Kalman �lter� The �lter is applied separately for horizontal

�i � 	� and vertical �i � �� directions� For each direction� the state vector is given

by Xi �
h
xi ui

it
� and the observation is the feature coordinate zi� The track life

n of the track is the number of frames in which the target has been observed� with

adjustments made in the frames where the target is not observed� The measurement

update is given by�

x�i �n� � xi�n� �K��n� �zi � xi�

u�i �n� � ui�n� �K��n� �zi � xi� ��	�

The state update is given by�

xi�n� 	� � x�i �n� � u�i �n�

ui�n� 	� � u�i �n� ����

The Kalman �lter matrix K�n� �
h
K��n� K��n�

it
is pre�computed using the in�

verse covariance formulation of the Kalman �lter� The computation is performed for

a number of n � 	 � � � N � where N is large enough so that K�N� does not change

signi�cantly with N �

The track amplitude is updated using recursive averaging according to the following

equation�

F �n� 	� � f�n� � �F �n� ����
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where F �n� and F �n�	� are the track amplitudes for the current and next frames� f�n�

is the feature amplitude� and � is the forgetting factor� The track life n is incremented

by one�

If no feature satisfying the above conditions is found in the neighborhood of the track�

the position and velocity are extrapolated using only the state update� Theoretically�

this would mean that the values of the Kalman �lter matrix would have to be recom�

puted� To avoid such a computation� the value of the track life n is reduced by a factor

to approximately simulate the e�ect of having �lost track� of the feature� The feature

amplitude is updated using f�n� � � in equation �����

�� Formation of new tracks� After all the current tracks are updated� features in the fea�

ture list are used to check for new tracks� For every feature� the list of tracks is scanned

to see if a track is already there in its neighborhood� If not� a track is created out of

the feature with its track life n � 	� Its position �x�� x�� will be the same as feature

position �z�� z��� whereas velocity �u�� u�� is initialized to zero� The actual velocity will

be computed only in the next frame�

�� Pruning the list of tracks� If the number of tracks is too large� the stage can get over�

loaded and fail to operate in real time� To eliminate this possibility� if the number of

tracks are greater than a particular number� the weakest tracks are deleted�


� Merging similar tracks� It may happen that two or more tracks may be formed corre�

sponding to the same object� Hence� tracks which are very close to each other and have

nearly the same velocity are merged� retaining the one with the larger track amplitude�

�� Output� Tracks which satisfy the criteria of the object� including having an amplitude

larger than a threshold� as well as other factors are output as potential objects�

��� Results

The real�time image capturing� recording� and processing system were demonstrated by

the �ight tests conducted by NASA� During the �rst set of �ight tests� image sequences

were captured and recorded successfully at the rate of �� frames per second� The tracking

algorithms were designed and �ne�tuned using these image sequences� During the next set

of �ight tests� in addition to the real�time capturing and recording� the translating target

tracking algorithm was executed concurrently at the rate of 	� frames per second� Several
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Figure �	� Tracking algorithm applied on an image sequence with the target aircraft trans�

lating from right to left at a distance of � nautical miles� The target aircraft is located at

the end of the track in this image�

image sequences with the target aircraft crossing the host aircraft were obtained� It was

observed that the system successfully detected and tracked the translating object during the

�ight tests� Figure �	 shows a trace of the tracking algorithm applied on an image sequence

with the target aircraft translating from right to left at a distance of � nautical miles�

Table �	 summarizes the performance of the translating target tracking algorithm with

di�erent distances between the host and the target aircraft� during the �rst set of �ight

tests� The false alarm rate is measured as the ratio of the total number of false alarms

throughout the sequence to the number of image frames in the sequence� The mis�detection

rate is measured as the ratio of the number of frames in which the target was missed to the

total number of frames� The false alarm rate depends on the amount and motion of clutter

in the images� whereas the mis�detection rate depends on the target size and contrast� and

therefore increases with the target distance in most cases� Since false alarms can be very

annoying to the pilots� a low false alarm rate was more desirable than a low mis�detection

rate� Hence� the parameters of the algorithms were selected to reduce the false alarm rate�

and were same for all the scenarios� It is possible to get a better performance by adjusting

parameters according to the characteristics �such as the clutter level� of each scenario�
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Table �	� The performance of the translating target detection algorithm for a number

of target distances� The false alarm rate is the ratio of the total number of false alarms

throughout the sequence to the number of image frames in the sequence� The mis�detection

rate is the ratio of the number of frames in which the target was missed to the total number

of frames�

Distance �nmi� Mis�detection rate False alarm rate

	�� ����	 �����

	�� ��		� �����

��� ����
 �����

��
 ����� �����

��� ����� �����


� ����� ��	��

��� ����� ��	


��
 ���
� �����

The performance was relatively poor in the cases where the host aircraft rotated about

its own axes� resulting in large image motion of background features� To improve the perfor�

mance� the image motion due to aircraft rotation should be compensated using the aircraft

navigation data� If this data is unavailable� the background motion should be modeled to

separate independent object motion� For example� Irani and Anandan ��� separated the scene

motion into planar and parallax components� and identi�ed independently moving objects

having a signi�cant parallax� However� since the DataCube architecture is capable only of

simple image processing operations� any such procedure would have to be performed on the

host machine� using a feature based approach�
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Chapter �

Conclusion

This research was focused on designing and implementing algorithms for detection of obsta�

cles in the �ight path of the aircraft using the image sequences obtained from the on board

cameras� The main contributions of this research and the possible avenues of future work

are described below�

	�� Contributions of this research

� Basic algorithms performing signal enhancement were tested for detecting �ying ob�
jects using the image sequences provided by NASA� Performance characterization of

these algorithms was conducted using simulated and real image sequences� It was ob�

served that the algorithms performed well on images with little or no clutter� but their

performance degraded in presence of clutter�

� To distinguish the objects on a collision course from the background clutter� the di�er�
ence in the behavior of their image translation and expansion were studied� Conditions

under which these criteria are useful were derived� Novel methods for estimating the

rates of image translation and expansion over long image sequences were designed and

tested on the image sequence with a large amount of background clutter� The approach

successfully separated the obstacle from the clutter�

� Algorithm fusion to overcome limitations of algorithms was studied� and it was observed
that under proper conditions� a combination of algorithms performed better than the

individual algorithms�
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� A real�time system using pipelined image�processing hardware was designed to detect
objects crossing the aircraft� The tracking algorithm to separate background clutter

from crossing objects was developed and implemented on the host machine associated

with the system�

	�� Future work

� Many of the research ideas� such as the use of translation and expansion� algorithm
fusion� etc� were tested individually� The future goal would be to combine these into an

integrated system for obstacle detection� Performance characterization of this system

could be done with more real image sequences�

� During the estimation of image translation to discriminate a hazardous object from
background clutter� the compensation of aircraft rotation was performed using the

navigation system information� Use of background clutter to model the aircraft motion

could be explored� so that the compensation could be performed even without the

navigation system information�

� False expansion occurring due to the rotation of the target aircraft can be studied�
This expansion takes place only in a particular direction� resulting in deformation

of the object in the image� Methods to distinguish this deformation from uniform

expansion can be studied�

� Gaussian models were used for studying the behavior of individual algorithms to per�
form algorithm fusion� Better models could be developed� especially in presence of

clutter� where the Gaussian models would not be as robust�

� To improve the performance of crossing object detection� the image motion due to
aircraft rotation should be compensated� This could be done either using the navigation

data from the aircraft� or by modeling the image motion separate independent object

motion� Since the DataCube architecture is capable only of simple image processing

operations� such a procedure should be performed on the host machine� using a feature

based approach�
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